Skip to main content
Log in

Immunological Analyses of Whole Blood via “Microfluidic Drifting” Based Flow Cytometric Chip

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cost-effective, high-performance diagnostic instruments are vital to providing the society with accessible, affordable, and high-quality healthcare. Here we present an integrated, “microfluidic drifting” based flow cytometry chip as a potential inexpensive, fast, and reliable diagnostic tool. It is capable of analyzing human blood for cell counting and diagnosis of diseases. Our device achieves a throughput of ~3754 events/s. Calibration with Flow-Check calibration beads indicated good congruency with a commercially available benchtop flow cytometer. Moreover, subjection to a stringent 8-peak rainbow calibration particle test demonstrated its ability to perform high-resolution immunological studies with separation resolution of 4.28 between the two dimmest fluorescent populations. Counting accuracy at different polystyrene bead concentrations showed strong correlation (r = 0.9991) with hemocytometer results. Finally, reliable quantification of CD4+ cells in healthy human blood via staining with monoclonal antibodies was demonstrated. These results demonstrate the potential of our microfluidic flow cytometry chip as an inexpensive yet high-performance point-of-care device for mobile medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chen, Y., P. Li, P.-H. Huang, Y. Xie, J. D. Mai, L. Wang, N.-T. Nguyen, and T. J. Huang. Rare cell isolation and analysis in microfluidics. Lab Chip 14:626–645, 2014.

    Article  PubMed  CAS  Google Scholar 

  2. Chen, Y., A. A. Nawaz, Y. Zhao, P.-H. Huang, J. P. McCoy, S. J. Levine, L. Wang, and T. J. Huang. Standing surface acoustic wave (SSAW)-based microfluidic cytometer. Lab Chip 14:916–923, 2014.

    Article  PubMed  Google Scholar 

  3. Cheng, X., Y. Liu, D. Irimia, U. Demirci, L. Yang, L. Zamir, W. R. Rodríguez, M. Toner, and R. Bashir. Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices. Lab Chip 7:746–755, 2007.

    Article  PubMed  CAS  Google Scholar 

  4. Chin, C. D., Y. K. Cheung, T. Laksanasopin, M. M. Modena, S. Y. Chin, A. A. Sridhara, D. Steinmiller, V. Linder, J. Mushingantahe, G. Umviligihozo, E. Karita, L. Mwambarangwe, S. L. Braunstein, J. van de Wijgert, R. Sahabo, J. E. Justman, W. El-Sadr, and S. K. Sia. Mobile device for disease diagnosis and data tracking in resource-limited settings. Clin. Chem. 59:629–640, 2013.

    Article  PubMed  CAS  Google Scholar 

  5. Chiu, Y.-J., S. H. Cho, Z. Mei, V. Lien, T.-F. Wu, and Y.-H. Lo. Universally applicable three-dimensional hydrodynamic microfluidic flow focusing. Lab Chip 13:1803–1809, 2013.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Eyal, S., and S. R. Quake. Velocity-independent microfluidic flow cytometry. Electrophoresis 23:2653–2657, 2002.

    Article  PubMed  CAS  Google Scholar 

  7. Goddard, G. R., C. K. Sanders, J. C. Martin, G. Kaduchak, and S. W. Graves. Analytical performance of an ultrasonic particle focusing flow cytometer. Anal. Chem. 79:8740–8746, 2007.

    Article  PubMed  CAS  Google Scholar 

  8. Godin, J., C.-H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y.-H. Lo. Microfluidics and photonics for Bio-System-on-a-Chip: a review of advancements in technology towards a microfluidic flow cytometry chip. J. Biophotonics 1:355–376, 2008.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Godin, J., V. Lien, and Y.-H. Lo. Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers. Appl. Phys. Lett. 89:061106, 2006.

    Article  Google Scholar 

  10. Godin, J., and Y.-H. Lo. Two-parameter angular light scatter collection for microfluidic flow cytometry by unique waveguide structures. Biomed. Opt. Express 1:1472–1479, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gossett, D. R., and D. Di Carlo. Particle focusing mechanisms in curving confined flows. Anal. Chem. 81:8459–8465, 2009.

    Article  PubMed  CAS  Google Scholar 

  12. Gottwald, E., B. Lahni, G. Lüdke, T. Preckel, and C. Buhlmann. Intracellular HSP72 detection in HL60 cells using a flow cytometry system based on microfluidic analysis. Biotechniques 35:358–362, 364, 366–367, 2003.

  13. Grafton, M., L. M. Reece, P. P. Irazoqui, B. Jung, H. D. Summers, R. Bashir, and J. F. Leary. Design of a multi-stage microfluidics system for high-speed flow cytometry and closed system cell sorting for cytomics. Proc. SPIE 6859:1–10, 2008.

    Google Scholar 

  14. Jayat, C., and M. H. Ratinaud. Cell cycle analysis by flow cytometry: principles and applications. Biol. Cell 78:15–25, 1993.

    Article  PubMed  CAS  Google Scholar 

  15. Kiesel, P., M. Beck, and N. Johnson. Monitoring CD4 in whole blood with an opto-fluidic detector based on spatially modulated fluorescence emission. Cytometry A 79:317–324, 2011.

    Article  PubMed  Google Scholar 

  16. Kummrow, A., J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer. Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining. Lab Chip 9:972–981, 2009.

    Article  PubMed  CAS  Google Scholar 

  17. Laerum, O. D., and R. Bjerknes. Flow Cytometry in Hematology. London: Academic Press, 1992.

    Google Scholar 

  18. Lapsley, M. I., L. Wang, and T. J. Huang. On-chip flow cytometry: where is it now and where is it going? Biomark. Med. 7:75–78, 2013.

    Article  PubMed  CAS  Google Scholar 

  19. Lee, G.-B., C.-H. Lin, and G.-L. Chang. Micro flow cytometers with buried SU-8/SOG optical waveguides. Sensors Actuators A Phys. 103:165–170, 2003.

    Article  CAS  Google Scholar 

  20. Maleki, T., T. Fricke, J. Quesenberry, P. Todd, and J. F. Leary. Point-of-care, portable microfluidic blood analyzer system. Proc. SPIE 8251:1–3, 2012.

    Google Scholar 

  21. Mao, X., and T. J. Huang. Microfluidic diagnostics for the developing world. Lab Chip 12:1412–1416, 2012.

    Article  PubMed  CAS  Google Scholar 

  22. Mao, X., S.-C. S. Lin, C. Dong, and T. J. Huang. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Lab Chip 9:1583–1589, 2009.

    Article  PubMed  CAS  Google Scholar 

  23. Mao, X., S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang. Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom. Lab Chip 9:2050–2058, 2009.

    Article  PubMed  CAS  Google Scholar 

  24. Mao, X., A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang. An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing. Biomicrofluidics 6:24113–241139, 2012.

    Article  PubMed  Google Scholar 

  25. Mao, X., J. R. Waldeisen, B. K. Juluri, and T. J. Huang. Hydrodynamically tunable optofluidic cylindrical microlens. Lab Chip 7:1303–1308, 2007.

    Article  PubMed  CAS  Google Scholar 

  26. Morris, K. Mobile phones connecting efforts to tackle infectious disease. Lancet Infect. Dis. 9:274, 2009.

    Article  PubMed  Google Scholar 

  27. Nawaz, A. A., X. Zhang, X. Mao, J. Rufo, S.-C. S. Lin, F. Guo, Y. Zhao, M. Lapsley, P. Li, J. P. McCoy, S. J. Levine, and T. J. Huang. Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via “microfluidic drifting”. Lab Chip 14:415–423, 2014.

    Article  PubMed  CAS  Google Scholar 

  28. Oakey, J., R. W. Applegate, E. Arellano, D. Di Carlo, S. W. Graves, and M. Toner. Particle focusing in staged inertial microfluidic devices for flow cytometry. Anal. Chem. 82:3862–3867, 2010.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Pop-Eleches, C., H. Thirumurthy, J. P. Habyarimana, J. G. Zivin, M. P. Goldstein, D. de Walque, L. MacKeen, J. Haberer, S. Kimaiyo, J. Sidle, D. Ngare, and D. R. Bangsberg. Mobile phone technologies improve adherence to antiretroviral treatment in a resource-limited setting: a randomized controlled trial of text message reminders. AIDS 25:825–834, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shapiro, H. M. Practical Flow Cytometry. New York: Wiley-Liss, 2003.

    Book  Google Scholar 

  31. Shapiro, H. M., and N. G. Perlmutter. Violet laser diodes as light sources for cytometry. Cytometry 44:133–136, 2001.

    Article  PubMed  CAS  Google Scholar 

  32. Shi, J., X. Mao, D. Ahmed, A. Colletti, and T. J. Huang. Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab Chip 8:221–223, 2008.

    Article  PubMed  CAS  Google Scholar 

  33. Shi, J., S. Yazdi, S.-C. S. Lin, X. Ding, I.-K. Chiang, K. Sharp, and T. J. Huang. Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 11:2319–2324, 2011.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Skommer, J., J. Akagi, K. Takeda, Y. Fujimura, K. Khoshmanesh, and D. Wlodkowic. Multiparameter Lab-on-a-Chip flow cytometry of the cell cycle. Biosens. Bioelectron. 42:586–591, 2013.

    Article  PubMed  CAS  Google Scholar 

  35. Telford, W. G., T. S. Hawley, and R. G. Hawley. Analysis of violet-excited fluorochromes by flow cytometry using a violet laser diode. Cytometry A 54:48–55, 2003.

    Article  PubMed  Google Scholar 

  36. Tudos, A. J., G. J. Besselink, and R. B. Schasfoort. Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 1:83–95, 2001.

    Article  PubMed  CAS  Google Scholar 

  37. Wang, J., B. Fei, R. L. Geahlen, and C. Lu. Quantitative analysis of protein translocations by microfluidic total internal reflection fluorescence flow cytometry. Lab Chip 10:2673–2679, 2010.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Wang, J., Y. Zhan, N. Bao, and C. Lu. Quantitative measurement of quantum dot uptake at the cell population level using microfluidic evanescent-wave-based flow cytometry. Lab Chip 12:1441–1445, 2012.

    Article  PubMed  CAS  Google Scholar 

  39. Wang, J.-H., L. Cheng, C.-H. Wang, W.-S. Ling, S.-W. Wang, and G.-B. Lee. An integrated chip capable of performing sample pretreatment and nucleic acid amplification for HIV-1 detection. Biosens. Bioelectron. 41:484–491, 2013.

    Article  PubMed  CAS  Google Scholar 

  40. Wang, S., F. Inci, G. De Libero, A. Singhal, and U. Demirci. Point-of-care assays for tuberculosis: role of nanotechnology/microfluidics. Biotechnol. Adv. 31:438–449, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wei, F., R. Lam, S. Cheng, S. Lu, D. Ho, and N. Li. Rapid detection of melamine in whole milk mediated by unmodified gold nanoparticles. Appl. Phys. Lett. 96:133702, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Woods, J., and R. Hoffman. Evaluating fluorescence sensitivity on flow cytometers: an overview. Cytometry A 33:256–259, 1998.

    Article  Google Scholar 

  43. Xia, Y., and G. M. Whitesides. Soft Lithography. Annu. Rev. Mater. Sci. 28:153–184, 1998.

    Article  CAS  Google Scholar 

  44. Yager, P., G. J. Domingo, and J. Gerdes. Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng. 10:107–144, 2008.

    Article  PubMed  CAS  Google Scholar 

  45. Zhao, C., Y. Liu, Y. Zhao, N. Fang, and T. J. Huang. A reconfigurable plasmofluidic lens. Nat. Commun. 4:2305, 2013.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Joseph Rufo and Adem Ozcelik for helpful discussions. This research was supported by the National Institutes of Health (NIH) Director’s New Innovator Award (1DP2OD007209-01), National Science Foundation, and the Penn State Center for Nanoscale Science (MRSEC) under grant DMR-0820404. Components of this work were conducted at the Penn State node of the NSF-funded National Nanotechnology Infrastructure Network (NNIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Jun Huang.

Additional information

Associate Editor Tingrui Pan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawaz, A.A., Nissly, R.H., Li, P. et al. Immunological Analyses of Whole Blood via “Microfluidic Drifting” Based Flow Cytometric Chip. Ann Biomed Eng 42, 2303–2313 (2014). https://doi.org/10.1007/s10439-014-1041-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1041-5

Keywords

Navigation