Skip to main content

Advertisement

Log in

PEG–Maleimide Hydrogels for Protein and Cell Delivery in Regenerative Medicine

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Protein- and cell-based therapies represent highly promising strategies for regenerative medicine, immunotherapy, and oncology. However, these therapies are significantly limited by delivery considerations, particularly in terms of protein stability and dosing kinetics as well as cell survival, engraftment, and function. Hydrogels represent versatile and robust delivery vehicles for proteins and cells due to their high water content that retains protein biological activity, high cytocompatibility and minimal adverse host reactions, flexibility and tunability in terms of chemistry, structure, and polymerization format, ability to incorporate various biomolecules to convey biofunctionality, and opportunity for minimally invasive delivery as injectable carriers. This review highlights recent progress in the engineering of poly(ethylene glycol) hydrogels cross-linked using maleimide reactive groups for protein and cell delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Alejandro, R., F. B. Barton, B. J. Hering, and S. Wease. 2008 Update from the collaborative islet transplant registry. Transplantation 86:1783–1788, 2008.

    Article  PubMed  Google Scholar 

  2. Almeda, F. Q., R. J. Snell, and J. E. Parrillo. The contemporary management of acute myocardial infarction. Crit. Care Clin. 17:411–434, 2001.

    Article  CAS  PubMed  Google Scholar 

  3. Anversa, P., J. Kajstura, M. Rota, and A. Leri. Regenerating new heart with stem cells. J. Clin. Invest. 123:62–70, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Barshes, N. R., S. Wyllie, and J. A. Goss. Inflammation-mediated dysfunction and apoptosis in pancreatic islet transplantation: implications for intrahepatic grafts. J. Leukoc. Biol. 77:587–597, 2005.

    Article  CAS  PubMed  Google Scholar 

  5. Barton, F. B., M. R. Rickels, R. Alejandro, B. J. Hering, S. Wease, B. Naziruddin, J. Oberholzer, J. S. Odorico, M. R. Garfinkel, M. Levy, F. Pattou, T. Berney, A. Secchi, S. Messinger, P. A. Senior, P. Maffi, A. Posselt, P. G. Stock, D. B. Kaufman, X. Luo, F. Kandeel, E. Cagliero, N. A. Turgeon, P. Witkowski, A. Naji, P. J. O’Connell, C. Greenbaum, Y. C. Kudva, K. L. Brayman, M. J. Aull, C. Larsen, T. W. Kay, L. A. Fernandez, M. C. Vantyghem, M. Bellin, and A. M. Shapiro. Improvement in outcomes of clinical islet transplantation: 1999–2010. Diabetes Care 35:1436–1445, 2012.

    Article  CAS  PubMed  Google Scholar 

  6. Brady, A. C., M. M. Martino, E. Pedraza, S. Sukert, A. Pileggi, R. Camillo, J. Hubbell, and C. Stabler. l. Tissue Eng Part A: Pro-angiogenic hydrogels within macroporous scaffolds enhances islet engraftment in an extrahepatic site, 2013.

    Google Scholar 

  7. Carmeliet, P., and R. K. Jain. Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307, 2011.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng, K., D. Fraga, C. Zhang, M. Kotb, A. O. Gaber, R. V. Guntaka, and R. I. Mahato. Adenovirus-based vascular endothelial growth factor gene delivery to human pancreatic islets. Gene Ther. 11:1105–1116, 2004.

    Article  CAS  PubMed  Google Scholar 

  9. Cheng, K., T. S. Li, K. Malliaras, D. R. Davis, Y. Zhang, and E. Marban. Magnetic targeting enhances engraftment and functional benefit of iron-labeled cardiosphere-derived cells in myocardial infarction. Circ. Res. 106:1570–1581, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Cheng, Y., Y. F. Liu, J. L. Zhang, T. M. Li, and N. Zhao. Elevation of vascular endothelial growth factor production and its effect on revascularization and function of graft islets in diabetic rats. World J. Gastroenterol. 13:2862–2866, 2007.

    CAS  PubMed  Google Scholar 

  11. Chiu, L. L., L. A. Reis, A. Momen, and M. Radisic. Controlled release of thymosin beta4 from injected collagen-chitosan hydrogels promotes angiogenesis and prevents tissue loss after myocardial infarction. Regen. Med. 7:523–533, 2012.

    Article  CAS  PubMed  Google Scholar 

  12. Chung, I. M., N. O. Enemchukwu, S. D. Khaja, N. Murthy, A. Mantalaris, and A. J. Garcia. Bioadhesive hydrogel microenvironments to modulate epithelial morphogenesis. Biomaterials 29:2637–2645, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Cittadini, A., M. G. Monti, V. Petrillo, G. Esposito, G. Imparato, A. Luciani, F. Urciuolo, E. Bobbio, C. F. Natale, L. Sacca, and P. A. Netti. Complementary therapeutic effects of dual delivery of insulin-like growth factor-1 and vascular endothelial growth factor by gelatin microspheres in experimental heart failure. Eur. J. Heart Fail. 13:1264–1274, 2011.

    Article  CAS  PubMed  Google Scholar 

  14. Davis, M. E., P. C. Hsieh, T. Takahashi, Q. Song, S. Zhang, R. D. Kamm, A. J. Grodzinsky, P. Anversa, and R. T. Lee. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc. Natl. Acad. Sci. U.S.A. 103:8155–8160, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Elbert, D. L., and J. A. Hubbell. Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules 2:430–441, 2001.

    Article  CAS  PubMed  Google Scholar 

  16. Emamaullee, J. A., and A. M. Shapiro. Factors influencing the loss of beta-cell mass in islet transplantation. Cell Transplant. 16:1–8, 2007.

    PubMed  Google Scholar 

  17. Engel, F. B., P. C. Hsieh, R. T. Lee, and M. T. Keating. FGF1/p38 map kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc. Natl. Acad. Sci. U.S.A. 103:15546–15551, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ferrara, N. Vascular endothelial growth factor. Arterioscler. Thromb. Vasc. Biol. 29:789–791, 2009.

    Article  CAS  PubMed  Google Scholar 

  19. Fiorina, P., A. M. Shapiro, C. Ricordi, and A. Secchi. The clinical impact of islet transplantation. Am. J. Transplant. 8:1990–1997, 2008.

    Article  CAS  PubMed  Google Scholar 

  20. Fu, Y., and W. J. Kao. In situ forming poly(ethylene glycol)-based hydrogels via thiol-maleimide Michael-type addition. J. Biomed. Mater. Res. A 98:201–211, 2011.

    Article  PubMed  Google Scholar 

  21. Garbern, J. C., E. Minami, P. S. Stayton, and C. E. Murry. Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium. Biomaterials 32:2407–2416, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hahn, M. S., J. S. Miller, and J. L. West. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv. Mater. 18:2679–2684, 2006.

    Article  CAS  Google Scholar 

  23. Hiemstra, C., L. J. van der Aa, Z. Zhong, P. J. Dijkstra, and J. Feijen. Novel in situ forming, degradable dextran hydrogels by michael addition chemistry: synthesis, rheology, and degradation. Macromolecules 40:1165–1173, 2007.

    Article  CAS  Google Scholar 

  24. Hiemstra, C., L. J. van der Aa, Z. Zhong, P. J. Dijkstra, and J. Feijen. Rapidly in situ-forming degradable hydrogels from dextran thiols through Michael addition. Biomacromolecules 8:1548–1556, 2007.

    Article  CAS  PubMed  Google Scholar 

  25. Hiscox, A. M., A. L. Stone, S. Limesand, J. B. Hoying, and S. K. Williams. An islet-stabilizing implant constructed using a preformed vasculature. Tissue Eng. Part A 14:433–440, 2008.

    Article  CAS  PubMed  Google Scholar 

  26. Hou, J., L. Wang, J. Jiang, C. Zhou, T. Guo, S. Zheng, and T. Wang. Cardiac stem cells and their roles in myocardial infarction. Stem Cell Rev. 9:326–338, 2013.

    Article  CAS  PubMed  Google Scholar 

  27. Hou, D., E. A. Youssef, T. J. Brinton, P. Zhang, P. Rogers, E. T. Price, A. C. Yeung, B. H. Johnstone, P. G. Yock, and K. L. March. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 112:I150–I156, 2005.

    PubMed  Google Scholar 

  28. Hsieh, P. C., M. E. Davis, J. Gannon, C. MacGillivray, and R. T. Lee. Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J. Clin. Invest. 116:237–248, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hu, B.-H., J. Su, and P. B. Messersmith. Hydrogels cross-linked by native chemical ligation. Biomacromolecules 10:2194–2200, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hubbell, J. A., S. N. Thomas, and M. A. Swartz. Materials engineering for immunomodulation. Nature 462:449–460, 2009.

    Article  CAS  PubMed  Google Scholar 

  31. Hunt, N. C., R. M. Shelton, D. J. Henderson, and L. M. Grover. Calcium-alginate hydrogel-encapsulated fibroblasts provide sustained release of vascular endothelial growth factor. Tissue Eng. Part A 19:905–914, 2013.

    Article  CAS  PubMed  Google Scholar 

  32. Ifkovits, J. L., E. Tous, M. Minakawa, M. Morita, J. D. Robb, K. J. Koomalsingh, J. H. Gorman, 3rd, R. C. Gorman, and J. A. Burdick. Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc. Natl. Acad. Sci. U.S.A. 107:11507–11512, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Johnson, T. D., and K. L. Christman. Injectable hydrogel therapies and their delivery strategies for treating myocardial infarction. Expert Opin. Drug Deliv. 10:59–72, 2013.

    Article  CAS  PubMed  Google Scholar 

  34. Kim, J., B. K. Wacker, and D. L. Elbert. Thin polymer layers formed using multiarm poly(ethylene glycol) vinylsulfone by a covalent layer-by-layer method. Biomacromolecules 8:3682–3686, 2007.

    Article  CAS  PubMed  Google Scholar 

  35. Kloxin, A. M., M. W. Tibbitt, and K. S. Anseth. Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms. Nat. Protoc. 5:1867–1887, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kopecek, J., and J. Yang. Smart self-assembled hybrid hydrogel biomaterials. Angew. Chem. Int. Ed. Engl. 51:7396–7417, 2012.

    Article  CAS  PubMed  Google Scholar 

  37. Lakey, J. R., M. Mirbolooki, and A. M. Shapiro. Current status of clinical islet cell transplantation. Methods Mol. Biol. 333:47–104, 2006.

    PubMed  Google Scholar 

  38. Leader, B., Q. J. Baca, and D. E. Golan. Protein therapeutics: a summary and pharmacological classification. Nat. Rev. Drug Discovery 7:21–39, 2008.

    Article  CAS  Google Scholar 

  39. Leslie-Barbick, J. E., J. E. Saik, D. J. Gould, M. E. Dickinson, and J. L. West. The promotion of microvasculature formation in poly(ethylene glycol) diacrylate hydrogels by an immobilized VEGF-mimetic peptide. Biomaterials 32:5782–5789, 2011.

    Article  CAS  PubMed  Google Scholar 

  40. Li, X. Y., T. Wang, X. J. Jiang, T. Lin, D. Q. Wu, X. Z. Zhang, E. Okello, H. X. Xu, and M. J. Yuan. Injectable hydrogel helps bone marrow-derived mononuclear cells restore infarcted myocardium. Cardiology 115:194–199, 2010.

    Article  CAS  PubMed  Google Scholar 

  41. Lin, C. C., and K. S. Anseth. Peg hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm. Res. 26:631–643, 2009.

    Article  CAS  PubMed  Google Scholar 

  42. Lin, C. C., and A. T. Metters. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. Rev. 58:1379–1408, 2006.

    Article  CAS  PubMed  Google Scholar 

  43. Linn, T., J. Schmitz, I. Hauck-Schmalenberger, Y. Lai, R. G. Bretzel, H. Brandhorst, and D. Brandhorst. Ischaemia is linked to inflammation and induction of angiogenesis in pancreatic islets. Clin. Exp. Immunol. 144:179–187, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Liu, Z., H. Wang, Y. Wang, Q. Lin, A. Yao, F. Cao, D. Li, J. Zhou, C. Duan, Z. Du, and C. Wang. The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment. Biomaterials 33:3093–3106, 2012.

    Article  CAS  PubMed  Google Scholar 

  45. Lutolf, M. P., P. M. Gilbert, and H. M. Blau. Designing materials to direct stem-cell fate. Nature 462:433–441, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Lutolf, M. P., and J. A. Hubbell. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23:47–55, 2005.

    Article  CAS  PubMed  Google Scholar 

  47. Malliaras, K., M. Kreke, and E. Marban. The stuttering progress of cell therapy for heart disease. Clin. Pharmacol. Ther. 90:532–541, 2011.

    Article  CAS  PubMed  Google Scholar 

  48. Mark Saltzman, W., and S. P. Baldwin. Materials for protein delivery in tissue engineering. Adv. Drug Deliv. Rev. 33:71–86, 1998.

    Article  PubMed  Google Scholar 

  49. Mathieu, E., G. Lamirault, C. Toquet, P. Lhommet, E. Rederstorff, S. Sourice, K. Biteau, P. Hulin, V. Forest, P. Weiss, J. Guicheux, and P. Lemarchand. Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction. PLoS ONE 7:e51991, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Mehta, M., K. Schmidt-Bleek, G. N. Duda, and D. J. Mooney. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv. Drug Deliv. Rev. 64:1257–1276, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Narang, A. S., K. Cheng, J. Henry, C. Zhang, O. Sabek, D. Fraga, M. Kotb, A. O. Gaber, and R. I. Mahato. Vascular endothelial growth factor gene delivery for revascularization in transplanted human islets. Pharm. Res. 21:15–25, 2004.

    Article  CAS  PubMed  Google Scholar 

  52. Narang, A. S., and R. I. Mahato. Biological and biomaterial approaches for improved islet transplantation. Pharmacol. Rev. 58:194–243, 2006.

    Article  CAS  PubMed  Google Scholar 

  53. National Diabetes Fact Sheet. Centers for Disease Control and Prevention, 2005.

  54. Pashuck, E. T., and M. M. Stevens. Designing regenerative biomaterial therapies for the clinic. Sci. Transl. Med. 4:160sr4, 2012.

    Article  PubMed  Google Scholar 

  55. Peppas, N. A., J. Z. Hilt, A. Khademhosseini, and R. Langer. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18:1345–1360, 2006.

    Article  CAS  Google Scholar 

  56. Peppas, N. A., Y. Huang, M. Torres-Lugo, J. H. Ward, and J. Zhang. Physicochemical, foundations and structural design of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng. 2:9–29, 2000.

    Article  CAS  PubMed  Google Scholar 

  57. Phelps, E. A., N. O. Enemchukwu, V. F. Fiore, J. C. Sy, N. Murthy, T. A. Sulchek, T. H. Barker, and A. J. Garcia. Maleimide cross-linked bioactive peg hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv. Mater. 24:64–70, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Phelps, E. A., D. M. Headen, W. R. Taylor, P. M. Thule, and A. J. Garcia. Vasculogenic bio-synthetic hydrogel for enhancement of pancreatic islet engraftment and function in type 1 diabetes. Biomaterials 34:4602–4611, 2013.

    Article  CAS  PubMed  Google Scholar 

  59. Phelps, E. A., N. Landazuri, P. M. Thule, W. R. Taylor, and A. J. García. Bioartificial matrices for therapeutic vascularization. Proc. Natl. Acad. Sci. U.S.A. 107:3323–3328, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Phelps, E. A., Templeman K. L. , P. M. Thule, and A. J. Garcia. Engineered VEGF-releasing PEG–MAL hydrogel for pancreatic islet vascularization. Drug Deliv. Transl. Res. 2013. doi:10.1007/s13346-013-0142-2.

  61. Prokoph, S., E. Chavakis, K. R. Levental, A. Zieris, U. Freudenberg, S. Dimmeler, and C. Werner. Sustained delivery of SDF-1alpha from heparin-based hydrogels to attract circulating pro-angiogenic cells. Biomaterials 33:4792–4800, 2012.

    Article  CAS  PubMed  Google Scholar 

  62. Quevedo, H. C., K. E. Hatzistergos, B. N. Oskouei, G. S. Feigenbaum, J. E. Rodriguez, D. Valdes, P. M. Pattany, J. P. Zambrano, Q. Hu, I. McNiece, A. W. Heldman, and J. M. Hare. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc. Natl. Acad. Sci. U.S.A. 106:14022–14027, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Ren, G., X. Chen, F. Dong, W. Li, X. Ren, Y. Zhang, and Y. Shi. Concise review: mesenchymal stem cells and translational medicine: emerging issues. Stem Cells Transl. Med. 1:51–58, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Rice, J. J., M. M. Martino, L. De Laporte, F. Tortelli, P. S. Briquez, and J. A. Hubbell. Engineering the regenerative microenvironment with biomaterials. Adv. Healthc. Mater. 2:57–71, 2013.

    Article  CAS  PubMed  Google Scholar 

  65. Rizzi, S. C., M. Ehrbar, S. Halstenberg, G. P. Raeber, H. G. Schmoekel, H. Hagenmuller, R. Muller, F. E. Weber, and J. A. Hubbell. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part II: Biofunctional characteristics. Biomacromolecules 7:3019–3029, 2006.

    Article  CAS  PubMed  Google Scholar 

  66. Rizzi, S. C., and J. A. Hubbell. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part I: Development and physicochemical characteristics. Biomacromolecules 6:1226–1238, 2005.

    Article  CAS  PubMed  Google Scholar 

  67. Robertson, R. P. Islet transplantation as a treatment for diabetes—a work in progress. N. Engl. J. Med. 350:694–705, 2004.

    Article  CAS  PubMed  Google Scholar 

  68. Roger, V. L., A. S. Go, D. M. Lloyd-Jones, E. J. Benjamin, J. D. Berry, W. B. Borden, D. M. Bravata, S. Dai, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, S. M. Hailpern, J. A. Heit, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, E. Z. Soliman, P. D. Sorlie, N. Sotoodehnia, T. N. Turan, S. S. Virani, N. D. Wong, D. Woo, and M. B. Turner. Heart disease and stroke statistics—2012 update: a report from the american heart association. Circulation 125:e2–e220, 2012.

    Article  PubMed  Google Scholar 

  69. Salimath, A. S., E. A. Phelps, A. V. Boopathy, P. L. Che, M. Brown, A. J. Garcia, and M. E. Davis. Dual delivery of hepatocyte and vascular endothelial growth factors via a protease-degradable hydrogel improves cardiac function in rats. PLoS ONE 7:e50980, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Sawhney, A. S., C. P. Pathak, and J. A. Hubbell. Modification of islet of langerhans surfaces with immunoprotective poly(ethylene glycol) coatings via interfacial photopolymerization. Biotechnol. Bioeng. 44:383–386, 1994.

    Article  CAS  PubMed  Google Scholar 

  71. Schmidt, J. J., J. Rowley, and H. J. Kong. Hydrogels used for cell-based drug delivery. J. Biomed. Mater. Res. A 87:1113–1122, 2008.

    Article  PubMed  Google Scholar 

  72. Seif-Naraghi, S. B., J. M. Singelyn, M. A. Salvatore, K. G. Osborn, J. J. Wang, U. Sampat, O. L. Kwan, G. M. Strachan, J. Wong, P. J. Schup-Magoffin, R. L. Braden, K. Bartels, J. A. DeQuach, M. Preul, A. M. Kinsey, A. N. DeMaria, N. Dib, and K. L. Christman. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Sci. Transl. Med. 5:173, 2013.

    Article  Google Scholar 

  73. Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 336:1124–1128, 2012.

    Article  CAS  PubMed  Google Scholar 

  74. Seliktar, D., A. H. Zisch, M. P. Lutolf, J. L. Wrana, and J. A. Hubbell. MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J. Biomed. Mater. Res. A 68:704–716, 2004.

    Article  CAS  PubMed  Google Scholar 

  75. Shapiro, A. M., C. Ricordi, B. J. Hering, H. Auchincloss, R. Lindblad, R. P. Robertson, A. Secchi, M. D. Brendel, T. Berney, D. C. Brennan, E. Cagliero, R. Alejandro, E. A. Ryan, B. DiMercurio, P. Morel, K. S. Polonsky, J. A. Reems, R. G. Bretzel, F. Bertuzzi, T. Froud, R. Kandaswamy, D. E. Sutherland, G. Eisenbarth, M. Segal, J. Preiksaitis, G. S. Korbutt, F. B. Barton, L. Viviano, V. Seyfert-Margolis, J. Bluestone, and J. R. Lakey. International trial of the Edmonton protocol for islet transplantation. N. Engl. J. Med. 355:1318–1330, 2006.

    Article  CAS  PubMed  Google Scholar 

  76. Shikanov, A., R. M. Smith, M. Xu, T. K. Woodruff, and L. D. Shea. Hydrogel network design using multifunctional macromers to coordinate tissue maturation in ovarian follicle culture. Biomaterials 32:2524–2531, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Sigrist, S., A. Mechine-Neuville, K. Mandes, V. Calenda, S. Braun, G. Legeay, J. P. Bellocq, M. Pinget, and L. Kessler. Influence of VEGF on the viability of encapsulated pancreatic rat islets after transplantation in diabetic mice. Cell Transplant. 12:627–635, 2003.

    CAS  PubMed  Google Scholar 

  78. Singelyn, J. M., P. Sundaramurthy, T. D. Johnson, P. J. Schup-Magoffin, D. P. Hu, D. M. Faulk, J. Wang, K. M. Mayle, K. Bartels, M. Salvatore, A. M. Kinsey, A. N. Demaria, N. Dib, and K. L. Christman. Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J. Am. Coll. Cardiol. 59:751–763, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Smith, R. R., E. Marban, and L. Marban. Enhancing retention and efficacy of cardiosphere-derived cells administered after myocardial infarction using a hyaluronan-gelatin hydrogel. Biomatter 3, 2013.

  80. Stabenfeldt, S. E., G. Munglani, A. J. Garcia, and M. C. LaPlaca. Biomimetic microenvironment modulates neural stem cell survival, migration, and differentiation. Tissue Eng. Part A 16:3747–3758, 2010.

    Article  CAS  PubMed  Google Scholar 

  81. Stabler, C. L., X. L. Sun, W. Cui, J. T. Wilson, C. A. Haller, and E. L. Chaikof. Surface re-engineering of pancreatic islets with recombinant azido-thrombomodulin. Bioconjug. Chem. 18:1713–1715, 2007.

    Article  CAS  PubMed  Google Scholar 

  82. Stendahl, J. C., D. B. Kaufman, and S. I. Stupp. Extracellular matrix in pancreatic islets: relevance to scaffold design and transplantation. Cell Transplant. 18:1–12, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Stendahl, J. C., L. J. Wang, L. W. Chow, D. B. Kaufman, and S. I. Stupp. Growth factor delivery from self-assembling nanofibers to facilitate islet transplantation. Transplantation 86:478–481, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Su, J., B.-H. Hu, W. L. Lowe, Jr., D. B. Kaufman, and P. B. Messersmith. Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation. Biomaterials 31:308–314, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Terrovitis, J., R. Lautamaki, M. Bonios, J. Fox, J. M. Engles, J. Yu, M. K. Leppo, M. G. Pomper, R. L. Wahl, J. Seidel, B. M. Tsui, F. M. Bengel, M. R. Abraham, and E. Marban. Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery. J. Am. Coll. Cardiol. 54:1619–1626, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Tous, E., J. L. Ifkovits, K. J. Koomalsingh, T. Shuto, T. Soeda, N. Kondo, J. H. Gorman, 3rd, R. C. Gorman, and J. A. Burdick. Influence of injectable hyaluronic acid hydrogel degradation behavior on infarction-induced ventricular remodeling. Biomacromolecules 12:4127–4135, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Tsur-Gang, O., E. Ruvinov, N. Landa, R. Holbova, M. S. Feinberg, J. Leor, and S. Cohen. The effects of peptide-based modification of alginate on left ventricular remodeling and function after myocardial infarction. Biomaterials 30:189–195, 2009.

    Article  CAS  PubMed  Google Scholar 

  88. Vaithilingam, V., G. Sundaram, and B. E. Tuch. Islet cell transplantation. Curr. Opin. Organ Transplant. 13:633–638, 2008.

    Article  PubMed  Google Scholar 

  89. Wall, S. T., C. C. Yeh, R. Y. Tu, M. J. Mann, and K. E. Healy. Biomimetic matrices for myocardial stabilization and stem cell transplantation. J. Biomed. Mater. Res. A 95:1055–1066, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Weber, L. M., and K. S. Anseth. Hydrogel encapsulation environments functionalized with extracellular matrix interactions increase islet insulin secretion. Matrix Biol. 27:667–673, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Weber, L. M., C. Y. Cheung, and K. S. Anseth. Multifunctional pancreatic islet encapsulation barriers achieved via multilayer peg hydrogels. Cell Transplant. 16:1049–1057, 2008.

    Article  PubMed  Google Scholar 

  92. Wilson, J. T., W. Cui, and E. L. Chaikof. Layer-by-layer assembly of a conformal nanothin PEG coating for intraportal islet transplantation. Nano Lett. 8:1940–1948, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Yu, H., Z.-G. Feng, A.-Y. Zhang, L.-G. Sun, and L. Qian. Synthesis and characterization of three-dimensional crosslinked networks based on self-assembly of α-cyclodextrins with thiolated 4-arm PEG using a three-step oxidation. Soft Matter 2:343, 2006.

    Article  CAS  Google Scholar 

  94. Yu, J., Y. Gu, K. T. Du, S. Mihardja, R. E. Sievers, and R. J. Lee. The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials 30:751–756, 2009.

    Article  CAS  PubMed  Google Scholar 

  95. Yun, L. D., N. J. Hee, and Y. Byun. Functional and histological evaluation of transplanted pancreatic islets immunoprotected by PEGylation and cyclosporine for 1 year. Biomaterials 28:1957–1966, 2007.

    Article  Google Scholar 

  96. Zhu, J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31:4639–4656, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Zisch, A. H., M. P. Lutolf, M. Ehrbar, G. P. Raeber, S. C. Rizzi, N. Davies, H. Schmokel, D. Bezuidenhout, V. Djonov, P. Zilla, and J. A. Hubbell. Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J. 17:2260–2262, 2003.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

AJG is partially supported by the NIH (R01 AR062368, R01 AR062920, DP3 DK094346), NSF (CBET 0939511) and the Juvenile Diabetes Research Foundation (17-2013-277).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés J. García.

Additional information

Associate Editor Robert Nerem oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, A.J. PEG–Maleimide Hydrogels for Protein and Cell Delivery in Regenerative Medicine. Ann Biomed Eng 42, 312–322 (2014). https://doi.org/10.1007/s10439-013-0870-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0870-y

Keywords

Navigation