Skip to main content

Advertisement

Log in

Distribution of Blood–Brain Barrier Disruption in Primary Blast Injury

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) resulting from explosive-related blast overpressure is a topic at the forefront of neurotrauma research. Compromise of the blood–brain barrier (BBB) and other cerebral blood vessel dysfunction is commonly reported in both experimental and clinical studies on blast injury. This study used a rifle primer-driven shock tube to investigate cerebrovascular injury in rats exposed to low-impulse, pure primary blast at three levels of overpressure (145, 232, and 323 kPa) and with three survival times (acute, 24, and 48 h). BBB disruption was quantified immunohistochemically by measuring immunoglobulin G (IgG) extravasation with image analysis techniques. Pure primary blast generated small lesions scattered throughout the brain. The number and size of lesions increased with peak overpressure level, but no significant difference was seen between survival times. Despite laterally directed blast exposure, equal numbers of lesions were found in each hemisphere of the brain. These observations suggest that cerebrovascular injury due to primary blast is distinct from that associated with conventional TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Armonda, R. A., R. S. Bell, A. H. Vo, G. Ling, T. J. DeGraba, B. Crandall, J. Ecklund, and W. W. Campbell. Wartime traumatic cerebral vasospasm: recent review of combat casualties. Neurosurgery 59:1215–1225, 2006.

    Article  PubMed  Google Scholar 

  2. Axelsson, H., H. Hjelmqvist, A. Medin, J. K. Persson, and A. Suneson. Physiological changes in pigs exposed to a blast wave from a detonating high-explosive charge. Mil. Med. 165:119–126, 2000.

    PubMed  CAS  Google Scholar 

  3. Bass, C. R., M. B. Panzer, K. A. Rafaels, G. Wood, J. Shridharani, and B. Capehart. Brain injuries from blast. Ann. Biomed. Eng. 40:185–202, 2012.

    Article  PubMed  Google Scholar 

  4. Bauman, R. A., G. S. Ling, L. Tong, A. Januszkiewicz, D. Agoston, N. Delanerolle, J. Kim, D. Ritzel, R. Bell, J. M. Ecklund, et al. An introductory characterization of a combat-casualty-care relevant swine model of closed head injury resulting from exposure to explosive blast. J. Neurotrauma 26:841–860, 2009.

    Article  PubMed  Google Scholar 

  5. Bolander, R., B. Mathie, C. Bir, D. Ritzel, and P. VandeVord. Skull flexure as a contributing factor in the mechanism of injury in the rat when exposed to a shock wave. Ann. Biomed. Eng. 39:2550–2559, 2011.

    Article  PubMed  Google Scholar 

  6. Bowen, I. G., E. R. Fletcher, D. R. Richmond, F. G. Hirsch, and C. S. White. Biophysical mechanisms and scaling procedures applicable in assessing responses of the thorax energized by air-blast overpressures or by nonpenetrating missiles. Ann. N. Y. Acad. Sci. 152:122–146, 1968.

    Article  PubMed  CAS  Google Scholar 

  7. Cavaglia, M., S. M. Dombrowski, J. Drazba, A. Vasanji, P. M. Bokesch, and D. Janigro. Regional variation in brain capillary density and vascular response to ischemia. Brain Res. 910:81–93, 2001.

    Article  PubMed  CAS  Google Scholar 

  8. Cernak, I., and L. J. Noble-Haeusslein. Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J. Cereb. Blood Flow Metab. 30:255–266, 2010.

    Article  PubMed  Google Scholar 

  9. Cernak, I., J. Savic, Z. Malicevic, G. Zunic, P. Radosevic, I. Ivanovic, and L. Davidovic. Involvement of the central nervous system in the general response to pulmonary blast injury. J. Trauma 40:100–104, 1996.

    Article  Google Scholar 

  10. Cernak, I., Z. Wang, J. Jiang, X. Bian, and J. Savic. Ultrastructural and functional characteristics of blast injury-induced neurotrauma. J. Trauma 50:695–706, 2001.

    Article  PubMed  CAS  Google Scholar 

  11. Chavko, M., T. Watanabe, S. Adeeb, J. Lankasky, S. T. Ahlers, and R. M. McCarron. Relationship between orientation to a blast and pressure wave propagation inside the rat brain. J. Neurosci. Methods 195:61–66, 2011.

    Article  PubMed  Google Scholar 

  12. Courtney, M. W., and A. C. Courtney. Note: a table-top blast driven shock tube. Rev. Sci. Instrum. 81:126103, 2010.

    Article  PubMed  Google Scholar 

  13. Croll, S. D., R. M. Ransohoff, N. Cai, Q. Zhang, F. J. Martin, T. Wei, L. J. Kasselman, J. Kintner, A. J. Murphy, G. D. Yancopoulos, et al. VEGF-mediated inflammation precedes angiogenesis in adult brain. Exp. Neurol. 187:388–402, 2004.

    Article  PubMed  CAS  Google Scholar 

  14. Cullis, I. G. Blast waves and how they interact with structures. J. R. Army Med. Corps 147:16–26, 2001.

    Article  PubMed  CAS  Google Scholar 

  15. Dal Cengio Leonardi, A., N. J. Keane, C. A. Bir, A. G. Ryan, L. Xu, and P. J. VandeVord. Head orientation affects the intracranial pressure response resulting from shock wave loading in the rat. J. Biomech. 45:2595–2602, 2012.

    Google Scholar 

  16. DeWitt, D. S., and D. S. Prough. Blast-induced brain injury and posttraumatic hypotension and hypoxemia. J. Neurotrauma 26:877–887, 2009.

    Article  PubMed  Google Scholar 

  17. Elsayed, N. M. Toxicology of blast overpressure. Toxicology 121:1–15, 1997.

    Article  PubMed  CAS  Google Scholar 

  18. Garman, R. H., L. W. Jenkins, R. C. Switzer, R. A. Bauman, L. C. Tong, P. V. Swauger, S. A. Parks, D. V. Ritzel, C. E. Dixon, R. S. B. Clark, et al. Blast exposure in rats with body shielding is characterized primarily by diffuse axonal injury. J. Neurotrauma 28:947–959, 2011.

    Article  PubMed  Google Scholar 

  19. Goldstein, L. E., A. M. Fisher, C. A. Tagge, X.-L. Zhang, L. Velisek, J. A. Sullivan, C. Upreti, J. M. Kracht, M. Ericsson, M. W. Wojnarowicz, et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci. Transl. Med. 4:134ra160, 2012.

    Google Scholar 

  20. Graham, D. I. Neuropathology of head injury. In: Neurotrauma, edited by R. K. Nrayan, J. E. Wilberger, and J. T. Povlishock. New York: McGraw-Hill, 1996, pp. 43–59.

    Google Scholar 

  21. Klatzo, I. Blood–brain barrier and ischaemic brain oedema. Z. Kardiol. 76:67–69, 1987.

    PubMed  Google Scholar 

  22. Long, J. B., T. L. Bentley, K. A. Wessner, C. Cerone, S. Sweeney, and R. A. Bauman. Blast overpressure in rats: recreating a battlefield injury in the laboratory. J. Neurotrauma 26:827–840, 2009.

    Article  PubMed  Google Scholar 

  23. Lossinsky, A. S., and R. R. Shivers. Structural pathways for macromolecular and cellular transport across the blood–brain barrier during inflammatory conditions. Rev. Histol. Histopathol. 19:535–564, 2004.

    CAS  Google Scholar 

  24. Moss, W. C., M. J. King, and E. G. Blackman. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design. Phys. Rev. Lett. 103:108702, 2009.

    Article  PubMed  Google Scholar 

  25. Mouritz, A. P. Ballistic impact and explosive blast resistance of stitched composites. Compos. B Eng. 32:431–439, 2001.

    Article  Google Scholar 

  26. Ohtake, M., S. Morino, T. Kaidoh, and T. Inoue. Three-dimensional structural changes in cerebral microvessels after transient focal cerebral ischemia in rats: scanning electron microscopic study of corrosion casts. Neuropathology 24:219–227, 2004.

    Article  PubMed  Google Scholar 

  27. Paxinos, G., and C. Watson. The rat brain in stereotaxic coordinates (4th ed.). San Diego: Academic Press, 1998.

    Google Scholar 

  28. Rafaels, K. A., C. R. Bass, M. B. Panzer, R. S. Salzar, W. A. Woods, S. H. Feldman, T. Walilko, R. W. Kent, B. P. Capehart, J. B. Foster, et al. Brain injury risk from primary blast. J. Trauma. Acute. Care. Surg. 73:895–901, 2012.

    Article  PubMed  Google Scholar 

  29. Readnower, R. D., M. Chavko, S. Adeeb, M. D. Conroy, J. R. Pauly, R. M. McCarron, and P. G. Sullivan. Increase in blood–brain barrier permeability, oxidative stress, and activated microglia in a rat model of blast-induced traumatic brain injury. J. Neurosci. Res. 88:3530–3539, 2010.

    Article  PubMed  CAS  Google Scholar 

  30. Reneer, D. V. Blast-induced brain injury influence of shockwave components. Lexington, KY: University of Kentucky, 2012.

    Google Scholar 

  31. Saljo, A., F. Arrhen, H. Bolouri, M. Mayorga, and A. Hamberger. Neuropathology and pressure in the pig brain resulting from low-impulse noise exposure. J. Neurotrauma 25:1397–1406, 2008.

    Article  PubMed  Google Scholar 

  32. Svetlov, S. I., V. Prima, O. Glushakova, A. Svetlov, D. R. Kirk, H. Gutierrez, V. L. Serebruany, K. C. Curley, K. K. Wang, and R. L. Hayes. Neuro-glial and systemic mechanisms of pathological responses in rat models of primary blast overpressure compared to “composite” blast. Front. Neurol. 3:15, 2012.

    Article  PubMed  Google Scholar 

  33. White, C. S. The scope of blast and shock biology and problem areas in relating physical and biological parameters. Ann. N. Y. Acad. Sci. 152:89–102, 1968.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by the Department of Defense (W81XWH-08-1-0295). The authors would like to acknowledge Jordan Walker and Louise Butler for assistance with tissue processing, imaging, and data analysis.

Conflict of interest

No conflicting financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth L. Monson.

Additional information

Associate Editor Stefan M Duma oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeoh, S., Bell, E.D. & Monson, K.L. Distribution of Blood–Brain Barrier Disruption in Primary Blast Injury. Ann Biomed Eng 41, 2206–2214 (2013). https://doi.org/10.1007/s10439-013-0805-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0805-7

Keywords

Navigation