Skip to main content
Log in

Fabrication, Characterization and In Vitro Evaluation of Aligned PLGA–PCL Nanofibers for Neural Regeneration

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Electrospun nanofibrous scaffolds have received a great deal of attention in tissue engineering in recent years. Bridging larger nerve gaps between proximal and distal ends requires exogenous tubular constructs with uniaxially aligned topographical cues to promote the axonal re-growth due to the lack of fibrin cable formation. In this study, we have designed and developed a collector to obtain aligned nanofibers of PLGA–PCL. The average diameter of the fibers obtained is 230 ± 63 nm and the alignment of fibers is quantified by calculating relative angle of each fiber. The tensile strength, porosity, contact angle, and biodegradation of the uniaxial PLGA–PCL nanofibers are measured and compared with the corresponding random fibers. Pore size, Young’s modulus, and degradation of the aligned scaffold are significantly lesser than random fibers (p < 0.05). The in vitro cell adhesion and proliferation of Schwann cells on the aligned nanofibers are evaluated and compared with random nanofibers. Our results demonstrate that the alignment of nanofibers has a significant influence on the adhesion and proliferation of Schwann cells. Thus, the axially aligned nanofibers may mimic the fibrin cable architecture; thereby it may represent an ideal scaffold for extending the growth of axonal processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Agarwal, S., A. Greiner, and J. H. Wendorff. Electrospinning of manmade and biopolymer nanofibers-progress in techniques, materials, and applications. Adv. Funct. Mater. 19:2863–2879, 2009.

    Article  CAS  Google Scholar 

  2. Amado, S., M. J. Simoes, P. A. S. Armada da Silva, A. L. Luýs, Y. Shirosaki, M. A. Lopes, J. D. Santos, F. Fregnan, G. Gambarotta, S. Raimondo, M. Fornaro, A. P. Veloso, A. S. P. Varejao, A. C. Maurýcio, and S. Geuna. Use of hybrid chitosan membranes and N1E-115 cells for promoting nerve regeneration in an axonotmesis rat model. Biomaterials 29:4409–4419, 2008.

    Article  PubMed  CAS  Google Scholar 

  3. Balgude, A. P., X. Yu, A. Szymanski, and R. V. Bellamkonda. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials 22:1077–1084, 2001.

    Article  PubMed  CAS  Google Scholar 

  4. Bellamkonda, R. V. Peripheral nerve regeneration: an opinion on channels, scaffolds and anisotropy. Biomaterials 27:3515–3518, 2006.

    PubMed  CAS  Google Scholar 

  5. Bhang, S. H., J. S. Lim, C. Y. Choi, Y. K. Kwon, and B.-S. Kim. The behavior of neural stem cells on biodegradable synthetic polymers. J. Biomater. Sci. Polym. Ed. 18:223–239, 2007.

    Article  PubMed  CAS  Google Scholar 

  6. Bhattarai, S. R., N. Bhattarai, H. K. Yi, P. H. Hwang, D. I. Cha, and H. Y. Kim. Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials 25:2595–2602, 2004.

    Article  PubMed  CAS  Google Scholar 

  7. Bhattarai, N., D. Edmondson, O. Veiseh, F. A. Matsen, and M. Zhang. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26:6176–6184, 2005.

    Article  PubMed  CAS  Google Scholar 

  8. Bini, T. B., S. Gao, S. Wang, and S. Ramakrishna. Development of fibrous biodegradable polymer conduits for guided nerve regeneration. J. Mater. Sci. Mater. Med. 2005(16):367–375, 2005.

    Google Scholar 

  9. Cao, H., T. Liu, and S. Y. Chew. The application of nanofibrous scaffolds in neural tissue engineering. Adv. Drug Deliv. Rev. 61:1055–1064, 2009.

    Article  PubMed  CAS  Google Scholar 

  10. Chew, S. Y., R. Mi, A. Hoke, and K. W. Leong. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials 29:653–661, 2008.

    Article  PubMed  CAS  Google Scholar 

  11. Dhandayuthapani, B., U. M. Krishnan, and S. Sethuraman. Fabrication & characterization of chitosan–gelatin blend nanofibers for skin tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 94B:264–272, 2010.

    CAS  Google Scholar 

  12. Duan, B., X. Yuan, Y. Zhu, Y. Zhang, X. Li, Y. Zhang, and K. Yao. A nanofibrous composite membrane of PLGA–chitosan/PVA prepared by electrospinning. J. Eur. Polym. 42:2013–2022, 2006.

    Article  CAS  Google Scholar 

  13. Ellis, M. J., and J. B. Chaudhuri. Poly (lactic-co-glycolic acid) hollow fiber membranes for use as a Tissue engineering Scaffold. Biotechnol. Bioeng. 96:177–187, 2007.

    Article  PubMed  CAS  Google Scholar 

  14. Gupta, D., J. Venugopal, M. P. Prabhakaran, V. R. Giri Dev, S. Low, A. T. Choon, and S. Ramakrishan. Aligned and random nanofibrous substrate for in vitro culture of Schwann cells for neural tissue engineering. Acta Biomater. 5:2560–2569, 2009.

    Article  PubMed  CAS  Google Scholar 

  15. Hadlock, T., J. Elisseeff, R. Langer, J. Vacanti, and M. Cheney. A tissue engineered conduit for peripheral nerve repair. Arch. Otolaryngol. Head Neck Surg. 124:1081–1086, 1998.

    PubMed  CAS  Google Scholar 

  16. Hiep, N. T., and B. T. Lee. Electrospinning of PLGA/PCL blends for tissue engineering and their biocompatibility. J. Mater. Sci. Mater. Med. 21:1969–1978, 2010.

    Article  PubMed  CAS  Google Scholar 

  17. Hutmacher, D. W. Scaffold in tissue engineering bone and cartilage. Biomaterials 20:2529–2543, 2000.

    Article  Google Scholar 

  18. IJkema-Paassen, J., K. Jansen, A. Gramsbergen, and M. F. Meek. Transection of peripheral nerves, bridging strategies and effect evaluation. Biomaterials 25:1583–1592, 2004.

    Article  PubMed  CAS  Google Scholar 

  19. Jayaraman, K., M. Kotaki, Y. Z. Zhang, X. M. Mo, and S. Ramakrishna. Recent advances in polymer nanofibers. J. Nanosci. Nanotechnol. 4:52–65, 2004.

    PubMed  CAS  Google Scholar 

  20. Jones, L. L., M. Oudega, M. B. Bunge, and M. H. Tuszynski. Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. J. Physiol. 533:83–89, 2001.

    Article  PubMed  CAS  Google Scholar 

  21. Kang, Y. O., I. Yoon, S. Y. Lee, D. Kim, S. J. Lee, W. H. Park, and S. M. Hudson. Chitosan-coated poly(vinyl alcohol) nanofibers for wound dressings. J. Biomed. Mater. Res. B Appl. Biomater. 92B:568–576, 2010.

    CAS  Google Scholar 

  22. Kim, J. Y., and D. W. Cho. Blended PCL/PLGA scaffold fabrication using multi-head deposition system. Microelectron. Eng. 86:1447–1450, 2009.

    Article  CAS  Google Scholar 

  23. Kim, Y. T., V. K. Haftel, S. Kumar, and R. V. Bellamkonda. The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials 29:3117–3127, 2008.

    Article  PubMed  CAS  Google Scholar 

  24. Kuppan, P., S. Sethuraman, and U. M. Krishnan. Tissue engineering interventions for esophageal disorders—promises and challenges. Biotechnol. Adv., 2012. doi:10.1016/j.biotechadv.2012.03.005.

  25. Kuppan, P., K. S. Vasanthan, D. Sundaramurthi, U. M. Krishnan, and S. Sethuraman. Development of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: effects of topography, mechanical, and chemical stimuli. Biomacromolecules 12:3156–3165, 2011.

    Article  PubMed  CAS  Google Scholar 

  26. Liang, D., B. S. Hsiao, and B. Chu. Functional electron nanofibrous scaffolds for biomedical application. Adv. Drug Deliv. Rev. 59:1392–1412, 2007.

    Article  PubMed  CAS  Google Scholar 

  27. Liu, Y., H. Jiang, Y. Li, and K. Zhu. Control of dimensional stability and degradation rate in electrospun composite scaffolds composed of poly(d,l-lactide-co-glycolide) and poly (ε-caprolactone). Chin. J. Polym. Sci. 26:63–71, 2008.

    Article  Google Scholar 

  28. Mobarakeh, L. G., M. P. Prabhakaran, M. Morshed, M. H. Nasr-Esfahani, and S. Ramakrishna. Electrospun poly (3-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29:4532–4539, 2008.

    Article  Google Scholar 

  29. Nichols, C. M., M. J. Brenner, I. K. Fox, D. A. Hunter, S. R. Rickman, and S. E. Mackinnon. Effects of motor versus sensory nerve grafts on peripheral nerve regeneration. Exp. Neurol. 190:347–355, 2004.

    Article  PubMed  Google Scholar 

  30. Pearse, D. D., F. C. Pereira, A. E. Marcillo, M. L. Bates, Y. A. Berrocal, M. T. Filbin, and M. B. Bunge. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat. Med. 10:610–616, 2004.

    Article  PubMed  CAS  Google Scholar 

  31. Rutkowski, G. E., and C. A. Heath. Development of a bioartificial nerve graft. II. Nerve regeneration in vitro. Biotechnol. Prog. 18:373–379, 2002.

    Article  PubMed  CAS  Google Scholar 

  32. Salifu, A. A., B. D. Nury, and C. Lekakou. Electrospinning of nanocomposite fibrillar tubular and flat scaffolds with controlled fiber orientation. Ann. Biomed. Eng. 39:2510–2520, 2011.

    Article  PubMed  CAS  Google Scholar 

  33. Sangsanoh, P., S. Waleetorncheepsawat, O. Suwantong, P. Wutticharoenmongkol, O. Weeranantanapan, B. Chuenjitbuntaworn, P. Cheepsunthorn, P. Pavasant, and P. Supaphol. In vitro biocompatibility of Schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds. Biomacromolecules 8:1587–1594, 2007.

    Article  PubMed  CAS  Google Scholar 

  34. Schnell, E., K. Klinkhammer, S. Balzer, G. Brook, D. Klee, P. Dalton, and J. Mey. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend. Biomaterials 28:3012–3025, 2007.

    Article  PubMed  CAS  Google Scholar 

  35. Sethuraman, S., L. S. Nair, S. El-Amin, M. Nguyen, A. Singh, Y. E. Greish, H. R. Allcock, P. W. Brown, and C. T. Laurencin. Nanocomposite injectabls for orthopaedic applications based on polyphosphazenes. J. Biomater. Sci. Polym. Ed. 22:733–752, 2011.

    Article  PubMed  CAS  Google Scholar 

  36. Sethuraman, S., L. S. Nair, S. El-Amin, M. Nguyen, A. Singh, N. Krogman, Y. E. Greish, H. R. Allcock, P. W. Brown, and C. T. Laurencin. Mechanical properties and osteocompatibility of novel biodegradable alanine based polyphosphazenes: side group effects. Acta Biomater. 6:1931–1937, 2010.

    Article  PubMed  CAS  Google Scholar 

  37. Sill, T. J., and H. A. Von Recum. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006, 2008.

    Article  PubMed  CAS  Google Scholar 

  38. Subramanian, A., U. M. Krishnan, and S. Sethuraman. Axially aligned electrically conducting biodegradable nanofibers for neural regeneration. J. Mater. Sci. Mater. Med., 2012. doi:10.1007/s10856-012-4654-y.

  39. Subramanian, A., U. M. Krishnan, and S. Sethuraman. Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J. Biomed. Sci. 16:108, 2009.

    Article  PubMed  Google Scholar 

  40. Subramanian, A., U. M. Krishnan, and S. Sethuraman. Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration. Biomed. Mater. 6:025004, 2011.

    Article  PubMed  Google Scholar 

  41. Supaphol, P., and S. Chuangchote. On the electrospinning of poly(vinyl alcohol) nanofiber mats: a revisit. J. Appl. Polym. Sci. 108:969–978, 2008.

    Article  CAS  Google Scholar 

  42. Teo, W. E., M. Kotaki, X. M. Mo, and S. Ramakrishna. Porous tubular structures with controlled fibre orientation using a modified electrospinning method. Nanotechnology 16:918–924, 2005.

    Article  CAS  Google Scholar 

  43. Teo, W. E., and S. Ramakrishna. Electrospun fibre bundle made of aligned nanofibres over two fixed points. Nanotechnology 16:1878–1884, 2005.

    Article  CAS  Google Scholar 

  44. Teo, W. E., and S. Ramakrishna. A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89–R106, 2006.

    Article  PubMed  CAS  Google Scholar 

  45. Vasanthan, K. S., A. Subramanian, U. M. Krishnan, and S. Sethuraman. Role of biomaterials, therapeutic molecules and cells for hepatic tissue engineering. Biotechnol. Adv. 30:742–752, 2012.

    Article  PubMed  CAS  Google Scholar 

  46. Wang, W., S. Itoh, K. Konno, T. Kikkawa, S. Ichinose, K. Sakai, T. Ohkuma, and K. Watabe. Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. J. Biomed. Mater. Res. A 91:994–1005, 2009.

    PubMed  Google Scholar 

  47. Wen, X., and P. A. Tresco. Fabrication and characterization of permeable degradable poly(dl–lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels. Biomaterials 27:3800–3809, 2006.

    Article  PubMed  CAS  Google Scholar 

  48. Xie, J., M. R. MacEwan, S. M. Willerth, X. Li, D. W. Moran, S. E. Sakiyama-Elbert, and Y. Xia. Conductive core-sheath nanofibers and their potential application in neural tissue engineering. Adv. Funct. Mater. 19:2312–2318, 2009.

    Article  PubMed  CAS  Google Scholar 

  49. Xu, X. M., A. Chen, V. Guenard, N. Kleitman, and M. B. Bunge. Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. J. Neurocytol. l26:1–16, 1997.

    Article  Google Scholar 

  50. Xu, C. Y., R. Inai, M. Kotaki, and S. Ramakrishna. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25:877–886, 2004.

    Article  PubMed  CAS  Google Scholar 

  51. Yang, F., R. Murugan, S. Ramakrishna, X. Wang, Y. X. Ma, and S. Wang. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25:1891–1900, 2004.

    Article  PubMed  CAS  Google Scholar 

  52. Yang, F., R. Murugan, S. Wang, and S. Ramakrishna. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610, 2005.

    Article  PubMed  CAS  Google Scholar 

  53. Yeo, S., C. Choi, J. Yang, and D. Jung. Patterned amine surfaces with reduced background nonspecific protein adsorption fabricated by using inductively coupled plasma chemical vapour deposition. J. Korean Phys. Soc. 51:1000–1006, 2007.

    Article  CAS  Google Scholar 

  54. Yu, X., and R. V. Bellamkonda. Tissue engineered scaffolds are effective alternatives to autografts in bridging peripheral nerve gaps in rodents. Tissue Eng. 9:421–430, 2003.

    Article  PubMed  CAS  Google Scholar 

  55. Zussman, E., D. Rittel, and A. L. Yarin. Failure modes of electrospun nanofibers. Appl. Phys. Lett. 82:3958–3960, 2003.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is funded by the Indian Council for Medical Research (35/12/2009–BMS). The authors wish to acknowledge the infrastructure support provided by the Nano Mission Council (SR/S5/NM-07/2006 & SR/NM/PG-16/2007) and the FIST program (SR/FST/LSI-327/2007) of the Department of Science & Technology, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swaminathan Sethuraman.

Additional information

Associate Editor Smadar Cohen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramanian, A., Krishnan, U.M. & Sethuraman, S. Fabrication, Characterization and In Vitro Evaluation of Aligned PLGA–PCL Nanofibers for Neural Regeneration. Ann Biomed Eng 40, 2098–2110 (2012). https://doi.org/10.1007/s10439-012-0592-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0592-6

Keywords

Navigation