Skip to main content
Log in

Measurement of the Thermal Conductivity of Carbon Nanotube–Tissue Phantom Composites with the Hot Wire Probe Method

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Developing combinatorial treatments involving laser irradiation and nanoparticles require an understanding of the effect of nanoparticle inclusion on tissue thermal properties, such as thermal conductivity. This information will permit a more accurate prediction of temperature distribution and tumor response following therapy, as well as provide additional information to aid in the selection of the appropriate type and concentration of nanoparticles. This study measured the thermal conductivity of tissue representative phantoms containing varying types and concentrations of carbon nanotubes (CNTs). Multi-walled carbon nanotubes (MWNTs, length of 900–1200 nm and diameter of 40–60 nm), single-walled carbon nanotubes (SWNTs, length of 900–1200 nm and diameter <2 nm), and a novel embodiment of SWNTs referred to as single-walled carbon nanohorns (SWNHs, length of 25–50 nm and diameter of 3–5 nm) of varying concentrations (0.1, 0.5, and 1.0 mg/mL) were uniformly dispersed in sodium alginate tissue representative phantoms. The thermal conductivity of phantoms containing CNTs was measured using a hot wire probe method. Increasing CNT concentration from 0 to 1.0 mg/mL caused the thermal conductivity of phantoms containing SWNTs, SWNHs, and MWNTs to increase by 24, 30, and 66%, respectively. For identical CNT concentrations, phantoms containing MWNTs possessed the highest thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Anderson, R. R., and J. A. Parrish. The optics of human-skin. J. Invest. Dermatol. 77:13–19, 1981.

    Article  PubMed  CAS  Google Scholar 

  2. Arkin, H., K. R. Holmes, M. M. Chen, and W. G. Bottje. Thermal pulse decay method for simultaneous measurement of local thermal conductivity and blood perfusion: a theoretical analysis. J. Biomech. Eng. 108:208–214, 1986.

    Article  PubMed  CAS  Google Scholar 

  3. Bassil, A., P. Puech, L. Tubery, W. Bacsa, and E. Flahaut. Controlled laser heating of carbon nanotubes. Appl. Phys. Lett. 88:1731131–1731133, 2006.

    Article  Google Scholar 

  4. Bhattacharya, A., and R. L. Mahajan. Temperature dependence of thermal conductivity of biological tissues. Physiol. Meas. 24:769–783, 2003.

    Article  PubMed  CAS  Google Scholar 

  5. Bhavaraju, N. C., H. Cao, D. Y. Yuan, J. W. Valvano, and J. G. Webster. Measurement of directional thermal properties of biomaterials. IEEE Trans. Biomed. Eng. 48:261–267, 2001.

    Article  PubMed  CAS  Google Scholar 

  6. Blackwell, J. H. A transient-flow method for determination of thermal constants of insulating materials in bulk part I—theory. J. Appl. Phys. 25:137–144, 1954.

    Article  CAS  Google Scholar 

  7. Brown, E., L. Hao, J. C. Gallop, and J. C. Macfarlane. Ballistic thermal and electrical conductance measurements on individual multiwall carbon nanotubes. Appl. Phys. Lett. 87:0231071–0231073, 2005.

    Article  Google Scholar 

  8. Bryning, M. B., D. E. Milkie, M. F. Islam, J. M. Kikkawa, and A. G. Yodh. Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl. Phys. Lett. 87:161909, 2005.

    Article  Google Scholar 

  9. Burke, A., X. F. Ding, R. Singh, et al. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc. Natl. Acad. Sci. U.S.A. 106:12897–12902, 2009.

    Article  PubMed  CAS  Google Scholar 

  10. Carslaw, H. S., and J. C. Jaeger. Conduction of Heat in Solids (2nd ed.). Oxford: Clarendon Press, 1959.

    Google Scholar 

  11. Chen, M. M., K. R. Holmes, and V. Rupinskas. Pulse-decay method for measuring the thermal-conductivity of living tissues. J. Biomech. Eng. Trans. ASME 103:253–260, 1981.

    Article  CAS  Google Scholar 

  12. Clancy, T. C., and T. S. Gates. Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites. Polymer 47:5990–5996, 2006.

    Article  CAS  Google Scholar 

  13. Cohen, M. L. Measurement of the thermal properties of human skin. A review. J. Investig. Dermatol. 69:333–338, 1977.

    Article  PubMed  CAS  Google Scholar 

  14. Dresselhaus, M. S., G. Dresselhaus, and P. C. Eklund. Science of Fullerenes and Carbon Nanotubes. San Diego: Academic Press, 1996.

    Google Scholar 

  15. Ducharme, M. B., and P. Tikuisis. In vivo thermal conductivity of the human forearm tissues. J. Appl. Physiol. 70:2682–2690, 1991.

    PubMed  CAS  Google Scholar 

  16. Eletskii, A. V. Transport properties of carbon nanotubes. Phys. Usp. 52:209–224, 2009.

    Article  CAS  Google Scholar 

  17. Fan, X., et al. Isolation of carbon nanohorn assemblies and their potential for intracellular delivery. Nanotechnology 18:195103, 2007.

    Article  Google Scholar 

  18. Figliola, R. S., and D. E. Beasley. Theory and Design for Mechanical Measurements (2nd ed.). Hoboken, NJ: John Wiley, 1995.

    Google Scholar 

  19. Fisher, J. W., S. Sarkar, C. F. Buchanan, C. S. Szot, J. Whitney, H. C. Hatcher, S. V. Torti, C. G. Rylander, and M. N. Rylander. Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res. 70:9855–9864, 2010.

    Article  PubMed  CAS  Google Scholar 

  20. Fujii, M., X. Zhang, H. Xie, et al. Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95:065502, 2005.

    Article  PubMed  Google Scholar 

  21. Gao, L., X. Zhou, and Y. Ding. Effective thermal and electrical conductivity of carbon nanotube composites. Chem. Phys. Lett. 434:297–300, 2007.

    Article  CAS  Google Scholar 

  22. Gummow, R. J., and I. Sigalas. Generalised hot-wire technique for high pressure thermal conductivity measurements. J. Phys. E 21:442, 1988.

    Article  CAS  Google Scholar 

  23. Gun’kin, I., and N. Loginova. Effect of nature of organic solvent on the absorption spectrum of C60 fullerene. Russ. J. Gen. Chem. 76:1911–1913, 2006.

    Article  Google Scholar 

  24. Hill, J. E., J. D. Leitman, and J. E. Sunderland. Thermal conductivity of various meats. Food Technol. 21:1143–1148, 1967.

    Google Scholar 

  25. Hirsch, L. R., R. J. Stafford, J. A. Bankson, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U.S.A. 100:13549–13554, 2003.

    Article  PubMed  CAS  Google Scholar 

  26. Holmes, K. R., and M. M. Chen. Local thermal conductivity of Para-7 fibrosarcoma in hamster. In: 1979 Advances in Bioengineering. New York: ASME, 1979, pp. 147–149.

  27. Hone, J., M. Whitney, and A. Zettl. Thermal conductivity of single-walled carbon nanotubes. Synth. Met. 103:2498–2499, 1999.

    Article  CAS  Google Scholar 

  28. Huxtable, S. T., D. G. Cahill, S. Shenogin, et al. Interfacial heat flow in carbon nanotube suspensions. Nat. Mater. 2:731–734, 2003.

    Article  PubMed  CAS  Google Scholar 

  29. Iijima, S., M. Yudasaka, R. Yamada, et al. Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys. Lett. 309:165–170, 1999.

    Article  CAS  Google Scholar 

  30. Kam, N. W. S., M. O’Connell, J. A. Wisdom, and H. J. Dai. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. U.S.A. 102:11600–11605, 2005.

    Article  PubMed  CAS  Google Scholar 

  31. Lee, C. S. D., J. P. Gleghorn, N. Won Choi, M. Cabodi, A. D. Stroock, and L. J. Bonassar. Integration of layered chondrocyte-seeded alginate hydrogel scaffolds. Biomaterials 28:2987–2993, 2007.

    Article  PubMed  CAS  Google Scholar 

  32. Levi-Polyachenko, N. H., D. L. Carroll, and J. H. Stewart. Applications of carbon-based nanomaterials for drug delivery in oncology. In: Medicinal Chemistry and Pharmacological Potential of Fullerences and Carbon Nanotubes, edited by F. Cataldo and T. Ros. Netherlands: Springer, 2008, pp. 223–266.

  33. Liang, X. G., X. S. Ge, Y. P. Zhang, and G. J. Wang. A convenient method of measuring the thermal-conductivity of biological tissue. Phys. Med. Biol. 36:1599–1605, 1991.

    Article  PubMed  CAS  Google Scholar 

  34. Merabia, S., S. Shenogin, L. Joly, P. Keblinski, and J.-L. Barrat. Heat transfer from nanoparticles: a corresponding state analysis. Proc. Natl. Acad. Sci. 106:15113–15118, 2009.

    Article  PubMed  CAS  Google Scholar 

  35. Miyako, E., H. Nagata, K. Hirano, K. Sakamoto, Y. Makita, K. Nakayama, and T. Hirotsu. Photoinduced antiviral carbon nanohorns. Nanotechnology 19:4751031–4751037, 2008.

    Google Scholar 

  36. Miyako, E., H. Nagata, K. Hirano, M. Makita, K. Nakayama, T. Hirotsu, et al. Near-infrared laser-triggered carbon nanohorns for selective elimination of microbes. Nanotechnology 18:4751031–4751037, 2007.

    Google Scholar 

  37. Miyawaki, J., M. Yudasaka, T. Azami, Y. Kubo, and S. Iijima. Toxicity of single-walled carbon nanohorns. ACS Nano 2:213–226, 2008.

    Article  PubMed  CAS  Google Scholar 

  38. Moffat, R. J. Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1:3–17, 1988.

    Article  Google Scholar 

  39. Monteiro-Riviere, N. A., R. J. Nemanich, A. O. Inman, Y. Y. Y. Wang, and J. E. Riviere. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol. Lett. 155:377–384, 2005.

    Article  PubMed  CAS  Google Scholar 

  40. Nan, C.-W., R. Birringer, D. R. Clarke, and H. Gleiter. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81:6692–6699, 1997.

    Article  CAS  Google Scholar 

  41. Nan, C. W., G. Liu, Y. H. Lin, and M. Li. Interface effect on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 85:3549–3551, 2004.

    Article  CAS  Google Scholar 

  42. Nix, G. H., G. W. Lowery, R. I. Vachon, and G. E. Tanger. Direct determination of thermal diffusivity and conductivity with a refined line-source technique. Process Aeronaut. Astronaut.: Thermophys. Spacecraft Planet. Bodies 20:865–878, 1967.

    Google Scholar 

  43. Poppendiek, H. F., R. Randall, J. A. Breeden, J. E. Chambers, and J. R. Murphy. Thermal conductivity measurements and predictions for biological fluids and tissues. Cryobiology 3:318–327, 1966.

    Article  Google Scholar 

  44. Rafii-Tabar, H. Computational Physics of Carbon Nanotubes. Cambridge, UK: Cambridge University Press, 2008.

    Google Scholar 

  45. Sarkar, S., J. Fisher, C. Rylander, and M. N. Rylander. Photothermal response of tissue phantoms containing multi-walled carbon nanotubes. J. Biomech. Eng. 132:044505, 2010.

    Article  PubMed  Google Scholar 

  46. Scheffy, W. J., and E. F. Johnson. Thermal conductivities of liquids at high temperatures. J. Chem. Eng. Data 6:245–249, 1961.

    Article  CAS  Google Scholar 

  47. Sun, Z., V. Nicolosi, D. Rickard, S. D. Bergin, D. Aherne, and J. N. Coleman. Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: dispersion quality and its correlation with zeta potential. J. Phys. Chem. C 112:10692–10699, 2008.

    Article  CAS  Google Scholar 

  48. Sun, X., R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji. Broadband optical limiting with multiwalled carbon nanotubes. Appl. Phys. Lett. 73:3632–3634, 1998.

    Article  CAS  Google Scholar 

  49. Torti, S. V., F. Byrne, O. Whelan, et al. Thermal ablation therapeutics based on CNx multi-walled nanotubes. Int. J. Nanomed. 2:707–714, 2007.

    CAS  Google Scholar 

  50. Touloukian, Y. S., P. E. Liley, and S. C. Saxena. Thermophysical Properties of Matter. New York: Plenum Publishing Corporation, 1970.

    Google Scholar 

  51. Valvano, J. W., J. R. Cochran, and K. R. Diller. Thermal-conductivity and diffusivity of biomaterials measured with self-heated thermistors. Int. J. Thermophys. 6:301–311, 1985.

    Article  Google Scholar 

  52. Warheit, D. B., B. R. Laurence, K. L. Reed, D. H. Roach, G. A. M. Reynolds, and T. R. Webb. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77:117–125, 2004.

    Article  PubMed  CAS  Google Scholar 

  53. White, B., S. Banerjee, S. O’Brien, N. J. Turro, and I. P. Herman. Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J. Phys. Chem. C 111:13684–13690, 2007.

    Article  CAS  Google Scholar 

  54. Whitney, J. R., S. Sarkar, J. Zhang, et al. Single walled carbon nanohorns as photothermal cancer agents. Lasers Surg. Med. 43:43–51, 2011.

    Article  PubMed  Google Scholar 

  55. Wong, M. Alginates in tissue engineering. In: Biopolymer Methods in Tissue Engineering, edited by Springerlink. New Jersey: Humana Press, Inc., 2003, pp. 77–86.

  56. Yehia, H. N., R. K. Draper, C. Mikoryak, et al. Single-walled carbon nanotube interactions with HeLa cells. J. Nanobiotechnol. 5:8, 2007.

    Article  Google Scholar 

  57. Yi, W., L. Lu, Z. Dian-lin, Z. W. Pan, and S. S. Xie. Linear specific heat of carbon nanotubes. Phys. Rev. B 59:R9015, 1999.

    Article  CAS  Google Scholar 

  58. Yi, M., H. V. Panchawagh, R. J. Podhajsky, and R. L. Mahajan. Micromachined hot-wire thermal conductivity probe for biomedical applications. IEEE Trans. Biomed. Eng. 56:2477–2484, 2009.

    Article  PubMed  Google Scholar 

  59. Zhang, H. F., L. Q. He, S. X. Cheng, Z. T. Zhai, and D. Y. Gao. A dual-thermistor probe for absolute measurement of thermal diffusivity and thermal conductivity by the heat pulse method. Meas. Sci. Technol. 14:1396–1401, 2003.

    Article  CAS  Google Scholar 

  60. Zhang, M., T. Murakami, K. Ajima, et al. Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proc. Natl. Acad. Sci. U.S.A. 105:14773–14778, 2008.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the following sources: National Institute of Health Grant 1 R21 CA135230-01, National Science Foundation Grants CBET 0731108 and Early CAREER Award CBET 0955072, and an Institute for Critical Technology and Applied Science Grant (ICTAS, Virginia Tech). We would also like to thank Dr. David Geohegan from Oak Ridge National Laboratories for kindly providing the single-walled carbon nanohorns and Dr. David Carroll’s group from Wake Forest University for further chemical modification of the multi-walled nanotubes to achieve appropriate lengths.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marissa Nichole Rylander.

Additional information

Associate Editor James Tunnell oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, S., Zimmermann, K., Leng, W. et al. Measurement of the Thermal Conductivity of Carbon Nanotube–Tissue Phantom Composites with the Hot Wire Probe Method. Ann Biomed Eng 39, 1745–1758 (2011). https://doi.org/10.1007/s10439-011-0268-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0268-7

Keywords

Navigation