Skip to main content

Advertisement

Log in

3D Micro-Crack Propagation Simulation at Enamel/Adhesive Interface Using FE Submodeling and Element Death Techniques

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study investigates micro-crack propagation at the enamel/adhesive interface using finite element (FE) submodeling and element death techniques. A three-dimensional (3D) FE macro-model of the enamel/adhesive/ceramic subjected to shear bond testing was generated and analyzed. A 3D micro-model with interfacial bonding structure was constructed at the upper enamel/adhesive interface where the stress concentration was found from the macro-model results. The morphology of this interfacial bonding structure (i.e., resin tag) was assigned based on resin tag geometry and enamel rod arrangement from a scanning electron microscopy micrograph. The boundary conditions for the micro-model were determined from the macro-model results. A custom iterative code combined with the element death technique was used to calculate the micro-crack propagation. Parallel experiments were performed to validate this FE simulation. The stress concentration within the adhesive occurred mainly at the upper corner near the enamel/adhesive interface and the resin tag base. A simulated fracture path was found at the resin tag base along the enamel/adhesive interface. A morphological observation of the fracture patterns obtained from in vitro testing corresponded with the simulation results. This study shows that the FE submodeling and element death techniques could be used to simulate the 3D micro-stress pattern and the crack propagation noted at the enamel/adhesive interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8

Similar content being viewed by others

References

  1. ANSYS 11.0 manual.

  2. Berkovitz, B. K. B., G. R. Holland, and B. J. Moxham. Oral Anatomy, Histology and Embryology. London: Mosby, pp. 101–118, 2002.

    Google Scholar 

  3. Betamar, N., G. Cardew, and R. van Noort. Influence of specimen designs on the microtensile bond strength of dentin. J. Adhes. Dent. 9:159–168, 2007.

    PubMed  CAS  Google Scholar 

  4. Betamar, N., G. Cardew, and R. van Noort. The effect of variations in hourglass specimen design on microtensile bond strength to dentin. J. Adhes. Dent. 9:427–436, 2007.

    PubMed  Google Scholar 

  5. Chang, K. H., S. Magdum, S. C. Khera, and V. K. Goel. An advanced approach for computer modeling and prototyping of the human tooth. Ann. Biomed. Eng. 31:621–631, 2003.

    Article  PubMed  Google Scholar 

  6. Cormier, N. G., B. S. Smallwood, G. B. Sinclair, and G. Meda. Aggressive submodelling of stress concentrations. Int. J. Numer. Methods Eng. 46:889–909, 1999.

    Article  Google Scholar 

  7. Craig, R. G., F. A. Peyton, and D. W. Johnson. Compressive properties of enamel, dental cements, and gold. J. Dent. Res. 40:936–945, 1961.

    Google Scholar 

  8. DeHoff, P. H., K. J. Anusavice, and Z. Wang. Three-dimensional finite element analysis of the shear bond test. Dent. Mater. 11:126–131, 1995.

    Article  PubMed  CAS  Google Scholar 

  9. Dos Santos, K. T., R. H. Sundfeld, C. A. Garbin, R. S. de Alexandre, M. L. Sundefeld, and B. N. Ceolim. Length of resin tags in pit-and-fissure sealants: all-in-one self-etching adhesive vs phosphoric acid etching. Compend. Contin. Educ. Dent. 29:186–192, 2008.

    PubMed  Google Scholar 

  10. Erickson, R. L., W. W. Barkmeier, and M. A. Latta. The role of etching in bonding to enamel: a comparison of self-etching and etch-and-rinse adhesive systems. Dent. Mater. 25:1459–1467, 2009.

    Article  PubMed  CAS  Google Scholar 

  11. Fennis, W. M. M., R. H. Kuijs, M. Barink, C. M. Kreulen, N. Verdonschot, and N. H. J. Creugers. Can internal stresses explain the fracture resistance of cusp-replacing composite restorations? Eur. J. Oral Sci. 113:443–448, 2005.

    Article  PubMed  CAS  Google Scholar 

  12. Gökçe, B., M. E. Çömlekoğlu, B. Özpinar, M. Türkün, and A. D. Kaya. Effect of antioxidant treatment on bond strength of a luting resin to bleached enamel. J. Dent. 36:780–785, 2008.

    Article  PubMed  CAS  Google Scholar 

  13. Guess, P. C., and C. F. J. Stappert. Midterm results of a 5-year prospective clinical investigation of extended ceramic veneers. Dent. Mater. 24:804–813, 2008.

    Article  PubMed  CAS  Google Scholar 

  14. Gupta, S., F. C. van der Helm, and F. van Keulen. Stress analysis of cemented glenoid prostheses in total shoulder arthroplasty. J. Biomech. 37:1777–1786, 2004.

    Article  PubMed  CAS  Google Scholar 

  15. Gupta, S., F. C. van der Helm, and F. van Keulen. The possibilities of uncemented glenoid component—a finite element study. Clin. Biomech. 19:292–302, 2004.

    Article  CAS  Google Scholar 

  16. Hipólito, V. D., M. F. Goes, M. R. O. Carrilho, D. C. N. Chan, M. Daronch, and M. A. C. Sinhoreti. SEM evaluation of contemporary self-etching primers applied to ground and unground enamel. J. Adhes. Dent. 7:203–211, 2005.

    PubMed  Google Scholar 

  17. Ichim, I., Q. Li, W. Li, M. V. Swain, and J. Kieser. Modelling of fracture behaviour in biomaterials. Biomaterials 28:1317–1326, 2007.

    Article  PubMed  CAS  Google Scholar 

  18. Kulkarni, M. G., P. H. Geubelle, and K. Matous. Multi-scale modeling of heterogeneous adhesives: effect of particle decohesion. Mech. Mater. 41:573–583, 2009.

    Article  Google Scholar 

  19. Liu, H. L., C. L. Lin, M. T. Sun, and Y. H. Chang. Numerical investigation of macro and micro-mechanics of a ceramic veneer bonded with various cement thicknesses using the typical and submodeling finite element approaches. J. Dent. 37:141–148, 2009.

    Article  PubMed  CAS  Google Scholar 

  20. Liu, J. M., J. T. Liu, and T. Sawa. Strength and failure of bulky adhesive joints with adhesively-bonded columns. J. Adhes. Sci. Tech. 18:1613–1623, 2004.

    Article  CAS  Google Scholar 

  21. Lührs, A. K., S. Guhr, H. Günay, and W. Geurtsen. Shear bond strength of self-adhesive resins compared to resin cements with etch and rinse adhesives to enamel and dentin in vitro. Clin. Oral Invest. 14:193–199, 2010.

    Article  Google Scholar 

  22. Matous, K., M. G. Kulkarni, and P. H. Geubelle. Multiscale cohesive failure modeling of heterogeneous adhesives. J. Mech. Phys. Solid 56:1511–1533, 2008.

    Article  CAS  Google Scholar 

  23. Misra, A., P. Spencer, O. Marangos, Y. Wang, and J. L. Katz. Micromechanical analysis of dentin/adhesive interface by the finite element method. J. Biomed. Mater. Res. B: Appl. Biomater. 15:56–65, 2004.

    Article  CAS  Google Scholar 

  24. Özcan, M., and A. Mese. Effect of ultrasonic versus manual cementation on the fracture strength of resin composite laminates. Oper. Dent. 34:437–442, 2009.

    Article  PubMed  Google Scholar 

  25. Pérez, M. A., J. M. García-Aznar, and M. Doblaré. Does increased bone–cement interface strength have negative consequences for bulk cement integrity? A finite element study. Ann. Biomed. Eng. 37:454–466, 2009.

    Article  PubMed  Google Scholar 

  26. Peumans, M., B. Van Meerbeek, P. Lambrechts, and G. Vanherle. Porcelain veneers: a review of the literature. J. Dent. 28:163–177, 2000.

    Article  PubMed  CAS  Google Scholar 

  27. Placido, E., J. B. C. Meira, R. G. Lima, A. Muench, R. M. Souza, and R. Y. Ballester. Shear versus micro-shear bond strength test: a finite element stress analysis. Dent. Mater. 23:1086–1092, 2007.

    Article  PubMed  CAS  Google Scholar 

  28. Ritter, A. V., E. Ghaname, and L. A. F. Pimenta. Dentin and enamel bond strengths of dual-cure composite luting agents used with dual-cure dental adhesives. J. Dent. 37:59–64, 2009.

    Article  PubMed  CAS  Google Scholar 

  29. Seghi, R. R., I. Denry, and F. Brajevic. Effects of ion exchange on hardness and fracture toughness of dental ceramics. Int. J. Prosthodont. 5:309–314, 1992.

    PubMed  CAS  Google Scholar 

  30. Shaini, F. J., A. C. Shortall, and P. M. Marquis. Clinical performance of porcelain laminate veneers. A retrospective evaluation over a period of 6.5 years. J. Oral Rehabil. 24:553–559, 1997.

    Article  PubMed  CAS  Google Scholar 

  31. Sieweke, M., U. Salomon-Sieweke, P. Zofel, and V. Stachniss. Longevity of oroincisal ceramic veneers on canines—a retrospective study. J. Adhes. Dent. 2:229–234, 2000.

    PubMed  CAS  Google Scholar 

  32. Simmons, C. A., S. A. Meguid, and R. M. Pilliar. Mechanical regulation of localized and appositional bone formation around bone-interfacing implants. J. Biomed. Mater. Res. 55:63–71, 2001.

    Article  PubMed  CAS  Google Scholar 

  33. Stacey, G. D. A shear stress analysis of the bonding of porcelain veneers to enamel. J. Prosthet. Dent. 70:395–402, 1993.

    Article  PubMed  CAS  Google Scholar 

  34. Swift, E. J., and M. J. Friedman. Critical appraisal. Porcelain veneer outcomes, part I. J. Esthet. Restor. Dent. 18:54–57, 2006.

    PubMed  Google Scholar 

  35. Troedson, M., and T. Derand. Effect of margin design, cement polymerization, and angle of loading on stress in porcelain veneers. J. Prosthet. Dent. 82:518–524, 1999.

    Article  PubMed  CAS  Google Scholar 

  36. van Landuyt, K. L., P. Kanumilli, J. De Munck, M. Peumans, P. Lambrechts, and B. van Meerbeek. Bond strength of a mild self-etch adhesive with and without prior acid-etching. J. Dent. 34:77–85, 2006.

    Article  PubMed  CAS  Google Scholar 

  37. Versluis, A., D. Tantbirojn, and W. H. Douglas. Why do shear bond tests pull out dentin? J. Dent. Res. 76:1298–1307, 1997.

    Article  PubMed  CAS  Google Scholar 

  38. Yuan, Y., Y. Shimada, S. Ichinose, A. Sadr, and J. Tagami. Effects of dentin characteristics on interfacial nanoleakage. J. Dent. Res. 86:1001–1006, 2007.

    Article  PubMed  CAS  Google Scholar 

  39. Zhao, R., K. Wyss, and C. A. Simmons. Comparison of analytical and inverse finite element approaches to estimate cell viscoelastic properties by micropipette aspiration. J. Biomech. 42:2768–2773, 2009.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Li Lin.

Additional information

Associate Editor Mona Kamal Marei oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, HL., Lin, CL., Sun, MT. et al. 3D Micro-Crack Propagation Simulation at Enamel/Adhesive Interface Using FE Submodeling and Element Death Techniques. Ann Biomed Eng 38, 2004–2012 (2010). https://doi.org/10.1007/s10439-010-0047-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0047-x

Keywords

Navigation