Skip to main content
Log in

The Effects of Interfacial Conditions and Stem Length on Potential Failure Mechanisms in the Uncemented Resurfaced Femur

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

It is hypothesized that changes in stem length and implant–bone interfacial conditions would affect the mechanical environment within the uncemented resurfaced femur, thereby influencing potential short- and long-term failure mechanisms. This study is aimed at investigating the influence of changes in implant–bone interfacial conditions and stem length on eventual failure, using 3D FE models integrated with bone remodeling simulations. Musculoskeletal forces corresponding to normal walking and stair climbing were used as applied loading conditions. Sliding micromotions of 26–72 μm at the implant–bone interfaces for both the stem designs suggest bone ingrowth on the coated surface of the implant was likely. The initial risk of femoral neck fracture was less for the uncemented designs as compared to the cemented designs, irrespective of interfacial conditions and variation in stem length. For the uncemented variety, shortening the stem length provided only slight advantages (5%) with regard to strain shielding and bone remodeling. However, bone resorption was considerably higher when fully bonded interfaces were simulated. It may, therefore, be concluded that cementless fixation seems to be a viable alternative to cemented fixation, provided sufficient initial fixation and secondary stability through bone ingrowth into the coated surface of the implant can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9

Similar content being viewed by others

References

  1. ANSYS User’s Manual. ANSYS v 11.0, ANSYS Inc., PA, USA, 2006.

  2. Bergmann, G., G. Deuretzbacher, M. Heller, F. Graichen, A. Rohlmann, J. Strauss, and G. Duda. Hip contact forces and gait patterns from routine activities. J. Biomech. 34:859–871, 2001.

    Article  CAS  PubMed  Google Scholar 

  3. Bernakiewicz, M., and M. Viceconti. The role of parameter identification in finite element contact analyses with reference to orthopaedic biomechanics applications. J. Biomech. 35:61–67, 2002.

    Article  PubMed  Google Scholar 

  4. Bitsakos, C., J. Kerner, I. Fisher, and A. A. Amis. The effect of muscle loading on the simulation of bone remodelling in the proximal femur. J. Biomech. 38(1):133–139, 2005.

    PubMed  Google Scholar 

  5. Bücher, P., D. P. Pioletti, and L. R. Rakotomanana. Biphasic constitutive laws for biological interface evolution. Biomech. Model Mechanobiol. 1:239–249, 2003.

    Article  Google Scholar 

  6. Destresse, B., M. C. Hobatho, and R. Darmana. Etude des proprietes mecaniques de l’os spongieux du tibia humain par une me′thode ultrasonore. Innov. Tech. Biol. Med. 16:288–299, 1995.

    Google Scholar 

  7. Gebert, A., J. Peters, N. E. Bishop, F. Westphal, and M. M. Morlock. Influence of press-fit parameters on the primary stability of uncemented femoral resurfacing implants. Med. Eng. Phys. 31:160–164, 2009.

    Article  CAS  PubMed  Google Scholar 

  8. Gross, T. P., and F. Liu. Metal-on-metal hip resurfacing with an uncemented femoral component. A seven year follow-up study. J. Bone Jt. Surg. Am. 90:32–37, 2008.

    Article  Google Scholar 

  9. Heller, M., G. Bergmann, G. Deuretzbacher, L. Durselen, M. Pohl, L. Claes, and G. N. Duda. Musculoskeletal loading conditions during walking and stair climbing. J. Biomech. 34:883–893, 2001.

    Article  CAS  PubMed  Google Scholar 

  10. Huiskes, R., H. Weinans, H. J. Grootenboer, M. Dalstra, B. Fudala, and T. J. Sloof. Adaptive bone remodeling theory applied to prosthetic design analysis. J. Biomech. 20:1135–1150, 1987.

    Article  CAS  PubMed  Google Scholar 

  11. Huiskes, R., H. Weinans, and B. van Rietbergen. The relationship between stress shielding and bone resorption around total hip stems and the effect of flexible materials. Clin. Orthop. Rel. Res. 274:124–134, 1992.

    Google Scholar 

  12. Jacobs, C. R., J. C. Simo, G. S. Beaupré, and D. R. Carter. Comparing an optimal global efficiency assumption to a principal stress based formulation for the simulation of anisotropic bone adaptation to mechanical loading. In: Bone Structure and Remodelling, edited by A. Odgaard, and H. Weinans. Singapore: World Scientific Publishers, 1995, pp. 603–613.

    Google Scholar 

  13. Katrana, P., J. R. Crawford, S. Vowler, A. Lilikakis, and R. N. Villar. Femoral neck resorption after hip resurfacing arthroplasty—a comparison of cemented and uncemented prosthesis. J. Bone Jt. Surg. Br. 88(SII):234, 2006.

    Google Scholar 

  14. Kishida, Y., N. Sugano, T. Nishii, H. Miki, K. Yamaguchi, and H. Yoshikawa. Preservation of the bone mineral density of the femur after surface replacement of the hip. J. Bone Jt. Surg. Br. 86:185–189, 2004.

    Article  CAS  Google Scholar 

  15. Lilikakis, A. K., S. L. Vowler, and R. N. Villar. Hydroxyapatite coated femoral implant in metal-on-metal resurfacing hip arthroplasty: minimum of two years follow-up. Orthop. Clin. North Am. 36:215–222, 2005.

    Article  PubMed  Google Scholar 

  16. McMinn, D., R. Treacy, and P. Link Pynsent. Metal on metal surface replacement of the hip: experience of the McMinn prosthesis. Clin. Orthop. Relat. Res. 329:S89–98, 1996.

    Article  PubMed  Google Scholar 

  17. Moreo, P., M. A. Pérez, J. M. García-Aznar, and M. Doblaré. Modeling the mechanical behaviour of living bony interfaces. Comput. Methods Appl. Mech. Eng. 196:3300–3314, 2007.

    Article  Google Scholar 

  18. Morgan, E. F., and T. M. Keaveny. Dependence of yield strain of human trabecular bone on anatomic site. J. Biomech. 34:569–577, 2001.

    Article  CAS  PubMed  Google Scholar 

  19. Ong, K. L., S. M. Kurtz, M. T. Manley, N. Rushton, M. A. Mahammed, and R. E. Field. Biomechanics of the Birmingham hip resurfacing arthroplasty. J. Bone Jt. Surg. Br. 88:1110–1115, 2006.

    Article  CAS  Google Scholar 

  20. Pal, B. Biomechanical analysis of failure mechanisms and design considerations for femoral resurfacing implants: numerical and experimental investigations. Ph.D. thesis, Indian Institute of Technology, Kharagpur, India, 2010

  21. Pal, B., S. Gupta, and A. M. New. A numerical study of failure mechanisms in the cemented resurfaced femur: effects of interface characteristics and bone remodelling. Proc. Inst. Mech. Eng. H. J. Eng. Med. 223:471–484, 2009.

    Article  CAS  Google Scholar 

  22. Pilliar, R. M., J. M. Lee, and C. Maniatopoulos. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin. Orthop. Relat. Res. 208:108–113, 1986.

    PubMed  Google Scholar 

  23. Ramamurti, B. S., T. E. Orr, C. R. Bragdon, J. D. Lowenstein, M. Jasty, and W. H. Harris. Factors influencing stability at the interface between a porous surface and cancellous bone: a finite element analysis of a canine in vivo micromotion experiment. J. Biomed. Mater. Res. 36:274–280, 1997.

    Article  CAS  PubMed  Google Scholar 

  24. Rancourt, D., A. Shirazi-Adl, G. Drouin, and G. Paiement. Friction properties of the interface between porous-surfaced metals and tibial cancellous bone. J. Biomed. Mater. Res. 24(11):1503–1519, 1990.

    Article  CAS  PubMed  Google Scholar 

  25. Shimmin, A., P. E. Beaule, and P. Campbell. Metal-on-metal hip resurfacing arthroplasty. J. Bone Jt. Surg. Am. 90:637–654, 2008.

    Article  Google Scholar 

  26. Taddei, F., A. Pancanti, and M. Viceconti. An improved method for the automatic mapping of computed tomography numbers onto finite element models. Med. Eng. Phys. 26:61–69, 2004.

    Article  PubMed  Google Scholar 

  27. van Rietbergen, B., R. Huiskes, H. Weinans, D. R. Sumner, T. M. Turner, and J. O. Galante. The mechanism of bone remodelling and resorption around press-fitted THA stems. J. Biomech. 26:369–382, 1993.

    Article  PubMed  Google Scholar 

  28. Vandamme, K., I. Naert, L. Geris, J. Vander Sloten, R. Puers, and J. Duyck. The effect of micromotion on the tissue response around immediately loaded roughened titanium implants in the rabbit. Eur. J. Oral Sci. 115(1):21–29, 2007.

    Article  PubMed  Google Scholar 

  29. Viceconti, M., R. Muccini, M. Bernakiewicz, M. Baleani, and L. Cristofolini. Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration. J. Biomech. 33:1611–1618, 2000.

    Article  CAS  PubMed  Google Scholar 

  30. Wagner, M., and H. Wagner. Preliminary results of uncemented metal-on-metal stemmed and resurfacing hip replacement arthroplasty. Clin. Orthop. Relat. Res. 329:S78–S88, 1996.

    Article  PubMed  Google Scholar 

  31. Weinans, H. Mechanically induced bone adaptations around orthopaedic implants. Ph.D. thesis, University of Nijmegen, the Netherlands, 1991.

  32. Weinans, H., R. Huiskes, B. van Rietbergen, D. R. Sumner, T. M. Turner, and J. O. Galante. Adaptive bone remodelling around bonded noncemented total hip arthroplasty: a comparison between animal experiments and computer simulation. J. Orthop. Res. 11:500–513, 1993.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank UKIERI British Council, DePuy International, UK and Department of Biotechnology, New Delhi, India, for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Gupta.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Pal, B. & New, A.M.R. The Effects of Interfacial Conditions and Stem Length on Potential Failure Mechanisms in the Uncemented Resurfaced Femur. Ann Biomed Eng 38, 2107–2120 (2010). https://doi.org/10.1007/s10439-010-0007-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0007-5

Keywords

Navigation