Skip to main content

Advertisement

Log in

IGF-1 and BMP-2 Induces Differentiation of Adipose-Derived Mesenchymal Stem Cells into Chondrocytes-Like Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Articular cartilage defects are common, causing significant morbidities. Tissue engineering using pluripotent stem cells is a new promising modality for cartilage repair. In the current study, we investigated the chondrogenesis of rabbit adipose-derived stem cells (ADSCs). We isolated rabbit ADSCs and transfected these cells with constructs encoding human insulin growth like factor 1 (IGF-1) and bone morphogenic protein 2 (BMP-2). We examined the growth and morphology of these transfected cells and their production of type II collagen and MMP-3. We found that IGF-1 and BMP-2 drove the chondrogenesis of ADSCs, which showed mature chondrocyte-like cells and formed cartilage nodules. These cells also produced type II collagen with a reduced production of MMP-3. Our findings suggested that human ADSCs could differentiate into chondrocyte-like cells driven by IGF-1 and BMP-2 and held promises as an abundant and ready source of stem cells for cartilage repair and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Alhadlaq, A., J. H. Elisseeff, L. Hong, C. G. Williams, A. I. Caplan, B. Sharma, R. A. Kopher, S. Tomkoria, D. P. Lennon, and A. Lopez. Adult stem cell driven genesis of human-shaped articular condyle. Ann. Biomed. Eng. 32(7):911–923, 2004.

    Article  PubMed  Google Scholar 

  2. Banfi, A., G. Bianchi, R. Notaro, L. Luzzatto, R. Cancedda, and R. Quarto. Replicative aging and gene expression in long-term cultures of human bone marrow stromal cells. Tissue. Eng. 8(6):901–910, 2002.

    Article  CAS  PubMed  Google Scholar 

  3. Bhosale, A. M., and J. B. Richardson. Articular cartilage: structure, injuries and review of management. Br. Med. Bull. 87:77–95, 2008.

    Article  PubMed  Google Scholar 

  4. Cui, B., S. P. Johnson, N.H. Bullock, F. Ali-Osman, D.D. Bigner, and H.S. Friedman. Bifunctional DNA alkylator 1,3-bis(2-chloroethyl)-1-nitrosourea activates the ATR-Chk1 pathway independently of the mismatch repair pathway. Mol. Pharmacol. 2009.

  5. De Ugarte, D. A., K. Morizono, A. Elbarbary, Z. Alfonso, P. A. Zuk, M. Zhu, J. L. Dragoo, P. Ashjian, B. Thomas, and P. Benhaim. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174(3):101–109, 2003.

    Article  PubMed  Google Scholar 

  6. Delany, A. M., S. Rydziel, and E. Canalis. Autocrine down-regulation of collagenase-3 in rat bone cell cultures by insulin-like growth factors. Endocrinology 137(11):4665–4670, 1996.

    Article  CAS  PubMed  Google Scholar 

  7. Dell’Accio, F., C. De Bari, N. M. El Tawil, F. Barone, T. A. Mitsiadis, J. O’Dowd, and C. Pitzalis. Activation of WNT and BMP signaling in adult human articular cartilage following mechanical injury. Arthritis Res. Ther. 8(5):R139, 2006.

    Article  PubMed  Google Scholar 

  8. Erickson, G. R., J. M. Gimble, D. M. Franklin, H. E. Rice, H. Awad, and F. Guilak. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem. Biophys. Res. Commun. 290(2):763–769, 2002.

    Article  CAS  PubMed  Google Scholar 

  9. Fraser, J. K., I. Wulur, Z. Alfonso, and M. H. Hedrick. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 24(4):150–154, 2006.

    Article  CAS  PubMed  Google Scholar 

  10. Fukumoto, T., J. W. Sperling, A. Sanyal, J. S. Fitzsimmons, G. G. Reinholz, C. A. Conover, and S. W. O’Driscoll. Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthr. Cartil. 11(1):55–64, 2003.

    Article  CAS  PubMed  Google Scholar 

  11. Gelse, K., C. Muhle, K. Knaup, B. Swoboda, M. Wiesener, F. Hennig, A. Olk, and H. Schneider. Chondrogenic differentiation of growth factor-stimulated precursor cells in cartilage repair tissue is associated with increased HIF-1alpha activity. Osteoarthr. Cartil. 16(12):1457–1465, 2008.

    Article  CAS  PubMed  Google Scholar 

  12. Guilak, F., H. A. Awad, B. Fermor, H. A. Leddy, and J. M. Gimble. Adipose-derived adult stem cells for cartilage tissue engineering. Biorheology 41(3–4):389–399, 2004.

    CAS  PubMed  Google Scholar 

  13. Guilak, F., K. E. Lott, H. A. Awad, Q. Cao, K. C. Hicok, B. Fermor, and J. M. Gimble. Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J. Cell. Physiol. 206(1):229–237, 2006.

    Article  CAS  PubMed  Google Scholar 

  14. Hicok, K. C., T. V. Du Laney, Y. S. Zhou, Y. D. Halvorsen, D. C. Hitt, L. F. Cooper, and J. M. Gimble. Human adipose-derived adult stem cells produce osteoid in vivo. Tissue. Eng. 10(3–4):371–380, 2004.

    Article  CAS  PubMed  Google Scholar 

  15. Huang, J. I., P. A. Zuk, N. F. Jones, M. Zhu, H. P. Lorenz, M. H. Hedrick, and P. Benhaim. Chondrogenic potential of multipotential cells from human adipose tissue. Plast. Reconstr. Surg. 113(2):585–594, 2004.

    Article  PubMed  Google Scholar 

  16. Hubbell, J. A. Materials as morphogenetic guides in tissue engineering. Curr. Opin. Biotechnol. 14(5):551–558, 2003.

    Article  CAS  PubMed  Google Scholar 

  17. Hunziker, E. B. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartil. 10(6):432–463, 2002.

    Article  CAS  PubMed  Google Scholar 

  18. Jin, E. J., S. Y. Lee, Y. A. Choi, J. C. Jung, O. S. Bang, and S. S. Kang. BMP-2-enhanced chondrogenesis involves p38 MAPK-mediated down-regulation of Wnt-7a pathway. Mol. Cells 22(3):353–359, 2006.

    CAS  PubMed  Google Scholar 

  19. Kern, S., H. Eichler, J. Stoeve, H. Kluter, and K. Bieback. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301, 2006.

    Article  CAS  PubMed  Google Scholar 

  20. Kessler, M. W., G. Ackerman, J. S. Dines, and D. Grande. Emerging technologies and fourth generation issues in cartilage repair. Sports Med. Arthrosc. 16(4):246–254, 2008.

    Article  PubMed  Google Scholar 

  21. Knippenberg, M., M. N. Helder, B. Zandieh Doulabi, P. I. Wuisman, and J. Klein-Nulend. Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells. Biochem. Biophys. Res. Commun. 342(3):902–908, 2006.

    Article  CAS  PubMed  Google Scholar 

  22. Loeser, R. F., C. A. Pacione, and S. Chubinskaya. The combination of insulin-like growth factor 1 and osteogenic protein 1 promotes increased survival of and matrix synthesis by normal and osteoarthritic human articular chondrocytes. Arthritis Rheum. 48(8):2188–2196, 2003.

    Article  CAS  PubMed  Google Scholar 

  23. Madry, H., G. Kaul, M. Cucchiarini, U. Stein, D. Zurakowski, K. Remberger, M. D. Menger, D. Kohn, and S. B. Trippel. Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther. 12(15):1171–1179, 2005.

    Article  CAS  PubMed  Google Scholar 

  24. Martin, I., V. P. Shastri, R. F. Padera, J. Yang, A. J. Mackay, R. Langer, G. Vunjak-Novakovic, and L. E. Freed. Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. J. Biomed. Mater. Res. 55(2):229–235, 2001.

    Article  CAS  PubMed  Google Scholar 

  25. Nakae, J., Y. Kido, and D. Accili. Distinct and overlapping functions of insulin and IGF-I receptors. Endocr. Rev. 22(6):818–835, 2001.

    Article  CAS  PubMed  Google Scholar 

  26. Nixon, A. J., L. R. Goodrich, M. S. Scimeca, T. H. Witte, L. V. Schnabel, A. E. Watts, and P. D. Robbins. Gene therapy in musculoskeletal repair. Ann. NY Acad. Sci. 1117:310–327, 2007.

    Article  CAS  PubMed  Google Scholar 

  27. Oh, C. D., and J. S. Chun. Signaling mechanisms leading to the regulation of differentiation and apoptosis of articular chondrocytes by insulin-like growth factor-1. J. Biol. Chem. 278(38):36563–36571, 2003.

    Article  CAS  PubMed  Google Scholar 

  28. Park, J., K. Gelse, S. Frank, K. von der Mark, T. Aigner, and H. Schneider. Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells. J. Gene Med. 8(1):112–125, 2006.

    Article  CAS  PubMed  Google Scholar 

  29. Presta, M., P. Dell’Era, S. Mitola, E. Moroni, R. Ronca, and M. Rusnati. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 16(2):159–178, 2005.

    Article  CAS  PubMed  Google Scholar 

  30. Ridgway, D. M., S. A. White, M. L. Nicholson, and R. M. Kimber. Pancreatic islet cell transplantation: progress in the clinical setting. Treat. Endocrinol. 2(3):173–189, 2003.

    Article  PubMed  Google Scholar 

  31. Rumalla, V. K., and G. L. Borah. Cytokines, growth factors, and plastic surgery. Plast. Reconstr. Surg. 108(3):719–733, 2001.

    Article  CAS  PubMed  Google Scholar 

  32. Schmidt, M. B., E. H. Chen, and S. E. Lynch. A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthr. Cartil. 14(5):403–412, 2006.

    Article  CAS  PubMed  Google Scholar 

  33. Schmitt, B., J. Ringe, T. Haupl, M. Notter, R. Manz, G. R. Burmester, M. Sittinger, and C. Kaps. BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high-density culture. Differentiation 71(9–10):567–577, 2003.

    Article  CAS  PubMed  Google Scholar 

  34. Schreml, S., P. Babilas, S. Fruth, E. Orsó, G. Schmitz, M. B. Mueller, M. Nerlich, and L. Prantl. Harvesting human adipose tissue-derived adult stem cells: resection versus liposuction. Cytotherapy 11(7):947–957, 2009.

    Article  CAS  PubMed  Google Scholar 

  35. Smith, Jr., G. N. The role of collagenolytic matrix metalloproteinases in the loss of articular cartilage in osteoarthritis. Front. Biosci. 11:3081–3095, 2006.

    Article  CAS  PubMed  Google Scholar 

  36. Sobajima, S., A. L. Shimer, R. C. Chadderdon, J. F. Kompel, J. S. Kim, L. G. Gilbertson, and J. D. Kang. Quantitative analysis of gene expression in a rabbit model of intervertebral disc degeneration by real-time polymerase chain reaction. Spine J. 5(1):14–23, 2005.

    Article  PubMed  Google Scholar 

  37. Starkman, B. G., J. D. Cravero, M. Delcarlo, and R. F. Loeser. IGF-I stimulation of proteoglycan synthesis by chondrocytes requires activation of the PI 3-kinase pathway but not ERK MAPK. Biochem. J. 723–729, 2005.

  38. Stenderup, K., J. Justesen, C. Clausen, and M. Kassem. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33(6):919–926, 2003.

    Article  PubMed  Google Scholar 

  39. Suzuki, T., K. Bessho, K. Fujimura, Y. Okubo, N. Segami, and T. Iizuka. Regeneration of defects in the articular cartilage in rabbit temporomandibular joints by bone morphogenetic protein-2. Br. J. Oral Maxillofac. Surg. 40(3):201–216, 2002.

    Article  CAS  PubMed  Google Scholar 

  40. Toh, W. S., Z. Yang, H. Liu, B. C. Heng, E. H. Lee, and T. Cao. Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells. Stem Cells 25(4):950–960, 2007.

    Article  CAS  PubMed  Google Scholar 

  41. Tyler, J. A. Insulin-like growth factor 1 can decrease degradation and promote synthesis of proteoglycan in cartilage exposed to cytokines. Biochem. J. 260(2):543–548, 1989.

    CAS  PubMed  Google Scholar 

  42. Wagner, W., F. Wein, A. Seckinger, M. Frankhauser, U. Wirkner, U. Krause, J. Blake, C. Schwager, V. Eckstein, and W. Ansorge. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol. 33(11):1402–1416, 2005.

    Article  CAS  PubMed  Google Scholar 

  43. Wei, Y., Y. Hu, R. Lv, and D. Li. Regulation of adipose-derived adult stem cells differentiating into chondrocytes with the use of rhBMP-2. Cytotherapy 8(6):570–579, 2006.

    Article  CAS  PubMed  Google Scholar 

  44. Zuk, P. A., M. Zhu, P. Ashjian, D. A. De Ugarte, J. I. Huang, H. Mizuno, Z. C. Alfonso, J. K. Fraser, P. Benhaim, and M. H. Hedrick. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13(12):4279–4295, 2002.

    Article  CAS  PubMed  Google Scholar 

  45. Zuk, P. A., M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, H. P. Lorenz, and M. H. Hedrick. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7(2):211–228, 2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhou An.

Additional information

Associate Editor Eric M. Darling oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, C., Cheng, Y., Yuan, Q. et al. IGF-1 and BMP-2 Induces Differentiation of Adipose-Derived Mesenchymal Stem Cells into Chondrocytes-Like Cells. Ann Biomed Eng 38, 1647–1654 (2010). https://doi.org/10.1007/s10439-009-9892-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9892-x

Keywords

Navigation