Skip to main content

Advertisement

Log in

A Magnetic Approach to Decrease Stent Graft Endoleak: Ex-Vivo Validation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Stent graft endoleak is a major problem in endovascular aneurysm repair (EVAR). Endoleak occurs after EVAR and may lead to aneurysm rupture, acute vessel thrombosis or occlusion. This study presents a novel design to potentially reduce endoleak with use of magnets. A ferromagnetic stent is deployed into the vessel lumen, and two external flexible magnetic rings are used to clamp on the proximal and distal necks of the stent. The rings impose epivascular magnetic pressure on the vessel wall to prevent the vessel wall from separating from the stent under elevated blood pressure. The geometry and magnetic properties of the stent and rings were designed to produce sufficient pressure, without overly compressing the vessel wall. Feasibility of this design was demonstrated with in vitro experiments using porcine abdominal aortas. The experiments showed that magnetic ring significantly improved the seal between the stent and vessel wall with use of moderate-sized stent. For aortas subjected to physiological axial stretch, rings that generate magnetic pressure of about 45 mmHg were found sufficient to prevent endoleak at pressure of 140 mmHg. Evaluation of this design in an in vivo animal model of aortic aneurysm is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Beebe, H. G., J. L. Cronenwett, B. T. Katzen, D. C. Brewster, and R. M. Green. Results of an aortic endograft trial: impact of device failure beyond 12 months. J. Vasc. Surg. 33:S55–S63, 2001. doi:10.1067/mva.2001.111663.

    Article  PubMed  CAS  Google Scholar 

  2. Blum, U., G. Voshage, J. Lammer, F. Beyersdorf, D. Töllner, G. Kretschmer, G. Spillner, P. Polterauer, G. Nagel, and T. Hölzenbein. Endoluminal stent-grafts for infrarenal abdominal aortic aneurysms. N. Engl. J. Med. 336:13–20, 1997. doi:10.1056/NEJM199701023360103.

    Article  PubMed  CAS  Google Scholar 

  3. Chaikof, E. L., J. D. Blankensteijn, P. L. Harris, G. H. White, C. K. Zarins, V. M. Bernhard, J. S. Matsumura, J. May, F. J. Veith, M. F. Fillinger, R. B. Rutherford, and K. C. Kent. Ad hoc committee for standardized reporting practices in vascular surgery of the society for vascular surgery/American association for vascular surgery. Reporting standard for endovascular aortic aneurysm repair. J. Vasc. Surg. 35:1048–1060, 2002. doi:10.1067/mva.2002.123763.

    Google Scholar 

  4. Erdmann, D., R. Sweis, C. Heitmann, K. Yasui, K. C. Olbrich, L. S. Levin, A. A. Sharkawy, and B. Klitzman. Side-to-side sutureless vascular anastomosis with magnets. J. Vasc. Surg. 40:505–511, 2004. doi:10.1016/j.jvs.2004.05.026.

    Article  PubMed  Google Scholar 

  5. Falk, V., T. Walther, H. Stein, S. Jacobs, C. Walther, A. Rastan, G. Wimmer-Greinecher, and F. W. Mohr. Facilitated endoscopic beating heart coronary artery bypass grafting using a magnetic coupling device. J. Thorac. Cardiovasc. Surg. 126:1575–1579, 2003. doi:10.1016/S0022-5223(03)00793-1.

    Article  PubMed  Google Scholar 

  6. Finn, R. Consider pulsatility when sizing aortic endografts. Thorac. Surg. News 3(4):10, 2007.

    Google Scholar 

  7. Freud, L. B. Dynamic Fracture Mechanics. Cambridge University Press, 1990.

  8. Fung, Y. C., K. Fronek, and P. Patitucci. Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. 237:H620–H631, 1979.

    PubMed  CAS  Google Scholar 

  9. Garasic, J. M., E. R. Edelman, J. C. Squire, P. Seifert, M. S. Williams, and C. Rogers. Stent and artery geometry determine intimal thickening independent of arterial injury. Circulation 101:812–818, 2000.

    PubMed  CAS  Google Scholar 

  10. Golzarian, J., and D. Valenti. Endoleakage after endovascular treatment of abdominal aortic aneurysms: diagnosis, significance and treatment. Eur. Radiol. 16:2849–2857, 2006. doi:10.1007/s00330-005-0129-6.

    Article  PubMed  Google Scholar 

  11. Gurrappa, I., and S. Pandian. Corrosion characteristics of Nd-Fe-B permanent magnets in different environments. Corros. Eng. Sci. Technol. 41:57–61, 2006.

    Article  CAS  Google Scholar 

  12. Heikkinen, M. A., J. M. Alsac, F. R. Arko, R. Metsänoja, A. Zvaigzne, and C. K. Zarins. The importance of iliac fixation in prevention of stent graft migration. J. Vasc. Surg. 43:1130–1137, 2006. doi:10.1016/j.jvs.2006.01.031.

    Article  PubMed  Google Scholar 

  13. Hinchliffe, R. J., and B. R. Hopkinson. Endovascular repair of abdominal aortic aneurysm: current status. J. R. Coll. Surg. Edinb. 47:523–527, 2002.

    PubMed  CAS  Google Scholar 

  14. Jiles, D. C. Introduction to Magnetism and Magnetic Materials, 2nd edn. Chapman & Hall/CRC, 1998.

  15. Kassab, G. S., and J. A. Navia. Biomechanical considerations in the design of graft: the homeostasis hypothesis. Annu. Rev. Biomed. Eng. 8:499–535, 2006. doi:10.1146/annurev.bioeng.8.010506.105023.

    Article  PubMed  CAS  Google Scholar 

  16. Kinloch, A. J., C. C. Lau, and J. G. Williams. The peeling of flexible laminates. Int. J. Fracture 66:45–70, 1994. doi:10.1007/BF00012635.

    Article  CAS  Google Scholar 

  17. Klima, U., V. Falk, M. Maringka, S. Bargenda, S. Badack, A. Moritz, F. Mohr, A. Haverich, and G. Wimmer-Greinecker. Magnetic vascular coupling or distal anastomosis in coronary artery bypass grafting: a multi-center trial. J. Thorac. Cardiovasc. Surg. 126:1568–1574, 2003. doi:10.1016/S0022-5223(03)01314-X.

    Article  PubMed  Google Scholar 

  18. Lambert, A. W., D. J. Williams, J. S. Budd, and M. Horrocks. Experimental assessment of proximal stent-graft (intervasculartm) fixation in human cadaveric infrarenal aortas. Eur. J. Vasc. Endovasc. Surg. 17:60–65, 1999. doi:10.1053/ejvs.1998.0711.

    Article  PubMed  CAS  Google Scholar 

  19. Litwinski, R. A., C. E. Donayre, S. L. Chow, T. K. Song, G. Kopchok, I. Walot, and R. A. White. The role of aortic neck dilation and elongation in the etiology of stent graft migration after endovascular abdominal aortic aneurysm repair with a passive fixation device. J. Vasc. Surg. 44:1176–1181, 2006. doi:10.1016/j.jvs.2006.08.028.

    Article  PubMed  Google Scholar 

  20. Liu, Y., C. Dang, M. Garcia, H. Gregersen, and G. S. Kassab. The surrounding tissues significantly affect the mechanics of the vessel wall: theory and experiment. Am. J. Physiol. Heart Circ. Physiol. 293:H3290–H3300, 2007. doi:10.1152/ajpheart.00666.2007.

    Article  PubMed  CAS  Google Scholar 

  21. Liu, Y., W. Zhang, and G. S. Kassab. Effects of myocardial constraint on the passive mechanical behaviors of the coronary vessel wall. Am. J. Physiol. Heart Circ. Physiol. 294:H514–H523, 2008. doi:10.1152/ajpheart.00670.2007.

    Article  PubMed  CAS  Google Scholar 

  22. Liu, Z. P., Y. Huo, J. A. Navia, and G. S. Kassab. A magnetic device to eliminate endograft migration: theory and experiment. Annu. Biomed. Eng. 36:57–65, 2008. doi:10.1007/s10439-007-9404-9.

    Article  Google Scholar 

  23. Makaroun, M. S., E. Chaikoff, T. Naslund, and J. S. Matsumura. Efficacy of a bifurcated endograft versus open repair of abdominal aortic aneurysms: a reappraisal. J. Vasc. Surg. 35:203–210, 2002. doi:10.1067/mva.2002.120377.

    Article  PubMed  Google Scholar 

  24. Marrewijk, C., J. M. Buth, P. L. Harris, L. Norgren, A. Nevelsteen, and M. G. Wyatt. Significance of endoleaks after endovascular repair of abdominal aortic aneurysms: The EUROSTAR experience. J. Vasc. Surg. 35:661–673, 2002. doi:10.1067/mva.2002.121755.

    Article  Google Scholar 

  25. Mohan, I. V., R. J. Laheij, and P. L. Harris. Risk factors for endoleak and the evidence for stent-graft oversizing in patients undergoing endovascular aneurysm repair. Eur. J. Vasc. Endovasc. Surg. 21:344–349, 2001. doi:10.1053/ejvs.2000.1341.

    Article  PubMed  CAS  Google Scholar 

  26. Moore, W. S., D. C. Brewster, and V. M. Bernhard. Aorto-uni-iliac endograft for complex aortoiliac aneurysms compared to the tube/bifurcation endografts. J. Vasc. Surg. 33:511–520, 2001. doi:10.1067/mva.2001.111681.

    Article  Google Scholar 

  27. Onitsuka, S., A. Tanaka, H. Akashi, K. Akaiwa, H. Otsuka, H. Yokokura, and S. Aoyagi. Initial and midterm results for repair of aortic diseases with handmade stent grafts. Circ. J. 70:726–732, 2006. doi:10.1253/circj.70.726.

    Article  PubMed  Google Scholar 

  28. Peterson, B. G., G. M. Longo, J. S. Matsumura, M. R. Kibbe, M. D. Morasch, K. R. Cardeira, and M. K. Eskandari. Endovascular repair of thoracic aortic pathology with custom-made devices. Surgery 138:598–605, 2005. doi:10.1016/j.surg.2005.06.043.

    Article  PubMed  Google Scholar 

  29. Qu, J., and J. L. Bassani. Finite cracks on bimaterial and bicrystal interfaces. J. Mech. Phys. Solids 37:435–453, 1989. doi:10.1016/0022-5096(89)90022-7.

    Article  Google Scholar 

  30. Rogachefsky, R. A., R. D. Altman, M. S. Markov, and H. S. Cheung. Use of a permanent magnetic field to inhibit the development of canine osteoarthritis. Bioelectromagnetics 25:260–270, 2004. doi:10.1002/bem.10192.

    Article  PubMed  Google Scholar 

  31. Sampaio, S. M., J. M. Panneton, G. I. Mozes, J. C. Andrews, T. C. Bower, M. Karla, A. A. Noel, K. J. Cherry, T. Sullivan, and P. Gloviczki. Proximal type i endoleak after endovascular abdominal aortic aneurysm repair: predictive factors. Ann. Vasc. Surg. 18:621–628, 2004. doi:10.1007/s10016-004-0100-z.

    Article  PubMed  Google Scholar 

  32. Scott, S., G. G. Ferguson, and M. R. Roach. Comparison of the elastic properties of human intracranial arteries and aneurysms. Can. J. Physiol. Pharmacol. 50:328–332, 1972.

    PubMed  CAS  Google Scholar 

  33. Van Prehn, J., K. L. Vincken, B. E. Muhs, G. K. W. Barwegen, L. W. Bartels, M. Prokop, F. L. Moll, and H. J. M. Verhagen. Toward endografting of the ascending aorta: insight into dynamics using dynamic cine-CTA. J. Endovasc. Therapy 14:551–560, 2007. doi:10.1583/1545-1550(2007)14[551:TEOTAA]2.0.CO;2.

    Article  Google Scholar 

  34. Wain, R. A., M. L. Marin, T. Ohki, L. A. Sanchez, R. T. Lyon, A. Rozenblit, W. D. Suggs, J. G. Yuan, and F. J. Veith. Endoleaks after endovascular graft treatment of aortic aneurysms: classification, risk factors, and outcome. J. Vasc. Surg. 27:69–80, 1998. doi:10.1016/S0741-5214(98)70293-9.

    Article  PubMed  CAS  Google Scholar 

  35. Wang, C., M. Garcia, X. Lu, Y. Lanir, and G. S. Kassab. Three-dimensional mechanical properties of porcine coronary arteries: a validated two-layer model. Am. J. Physiol. Heart Circ. Physiol. 291:H1200–H1209, 2006. doi:10.1152/ajpheart.01323.2005.

    Article  PubMed  CAS  Google Scholar 

  36. Wei, Y. G., and J. W. Hutchinson. Interface strength, work of adhesion and plasticity in the peel test. Int. J. Fracture 93:315–333, 1998. doi:10.1023/A:1007545200315.

    Article  CAS  Google Scholar 

  37. Wulandana, R., and A. M. Robertson. An inelastic multi-mechanism constitutive equation for cerebral arterial tissue. Biomech. Model. Mechanobiol. 4:235–248, 2005. doi:10.1007/s10237-005-0004-z.

    Article  PubMed  CAS  Google Scholar 

  38. Yamaguchi, M., K. Sugimoto, C. A. Zamora, T. Takahashi, Y. Hayashi, and K. Sugimura. Placement of self-expanding stents with different diameters in the porcine venous system: an experimental study. J. Vasc. Interv. Radiol. 17:113–119, 2006.

    Article  PubMed  Google Scholar 

  39. Zhang, W., C. Herrera, S. N. Atluri, and G. S. Kassab. The effect of surrounding tissue on vessel fluid and solid mechanics. J. Biomech. Eng. 126:760–769, 2004. doi:10.1115/1.1824128.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan S. Kassab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Liu, Y., Navia, J.A. et al. A Magnetic Approach to Decrease Stent Graft Endoleak: Ex-Vivo Validation. Ann Biomed Eng 37, 1727–1738 (2009). https://doi.org/10.1007/s10439-009-9741-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9741-y

Keywords

Navigation