Skip to main content
Log in

Embroidered and Surface Modified Polycaprolactone-Co-Lactide Scaffolds as Bone Substitute: In Vitro Characterization

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate an embroidered polycaprolactone-co-lactide (trade name PCL) scaffold for the application in bone tissue engineering. The surface of the PCL scaffolds was hydrolyzed with NaOH and coated with collagen I (coll I) and chondroitin sulfate (CS). It was investigated if a change of the surface properties and the application of coll I and CS could promote cell adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSC). The porosity (80%) and pore size (0.2–1 mm) of the scaffold could be controlled by embroidery technique and should be suitable for bone ingrowth. The treatment with NaOH made the polymer surface more hydrophilic (water contact angle dropped to 25%), enhanced the coll I adsorption (up to 15%) and the cell attachment (two times). The coll I coated scaffold improved cell attachment and proliferation (three times). CS, as part of the artificial matrix, could induce the osteogenic differentiation of hMSC without other differentiation additives. The investigated scaffolds could act not just as temporary matrix for cell migration, proliferation, and differentiation in bone tissue engineering but also have a great potential as bioartificial bone substitute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28(20):3074–82, 2007.

    Article  CAS  PubMed  Google Scholar 

  2. Atthoff B, Hilborn J. Protein adsorption onto polyester surfaces: is there a need for surface activation? J Biomed Mater Res B Appl Biomater 80(1):121–30, 2007.

    PubMed  Google Scholar 

  3. Becker D, Geissler U, Hempel U, Bierbaum S, Scharnweber D, Worch H, Wenzel KW. Proliferation and differentiation of rat calvarial osteoblasts on type I collagen-coated titanium alloy. J Biomed Mater Res 59(3):516–27, 2002.

    Article  CAS  PubMed  Google Scholar 

  4. Bierbaum S, Douglas T, Hanke T, Scharnweber D, Tippelt S, Monsees TK, Funk RH, Worch H. Collageneous matrix coatings on titanium implants modified with decorin and chondroitin sulfate: characterization and influence on osteoblastic cells. J Biomed Mater Res A 77(3):551–62, 2006.

    PubMed  Google Scholar 

  5. Bismarck A, Pfaffernoschke M, Selimoic M, Springer J. Electrokinetic and contact angle measurements of grafted carbon fibers. Colloid Polym Sc 276:1110–1116, 1998. doi:10.1007/s003960050352

    Article  CAS  Google Scholar 

  6. Bramfeldt H, Sarazin P, Vermette P. Characterization, degradation, and mechanical strength of poly(D,L-lactide-co-ε-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-co-ε-caprolactone). J Biomed Mater Res A 83(2):503–11, 2007.

    PubMed  Google Scholar 

  7. Damien CJ, Parsons JR. Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 2(3):187–20, 1991. doi:10.1002/jab.770020307

    Article  CAS  PubMed  Google Scholar 

  8. Datta N, Pham QP, Sharma U, Sikavitsas VI, Jansen JA, Mikos AG. In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proc Natl Acad Sci USA 103(8):2488–93, 2006.

    Article  CAS  PubMed  Google Scholar 

  9. den Dunnen WF, Robinson PH, van Wessel R, Pennings AJ, van Leeuwen MB, Schakenraad JM. Long-term evaluation of degradation and forein-body reaction of subcutaneously implanted poly(DL-lactide-epsiloncaprolactone). J Biomed Mater Res 36(3):337–46, 1997.

    Article  Google Scholar 

  10. Douglas T, Heinemann S, Mietrach C, Hempel U, Bierbaum S, Scharnweber D, Worch H. Interactions of collagen types I and II with chondroitin sulfates A-C and their effect on osteoblast adhesion. Biomacromolecules 8(4):1085–92, 2007.

    Article  CAS  PubMed  Google Scholar 

  11. Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW. Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules 9(8):2097–103, 2008.

    Article  CAS  PubMed  Google Scholar 

  12. Erisken C, Kalyon DM, Wang H. Functionally graded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials 29(30):4065–73, 2008.

    Article  CAS  PubMed  Google Scholar 

  13. Feldkamp LA, Davis LC, and Kress JW. Practical conebeam algorithm. J Opt Soc Amer; Vol. A1, pp. 612–619, 1984. doi:10.1364/JOSAA.1.000612

    Article  Google Scholar 

  14. Geissler U, Hempel U, Wolf C, Scharnweber D, Worch H, Wenzel K. Collagen type I-coating of Ti6Al4 V promotes adhesion of osteoblasts. J Biomed Mater Res 51(4):752–60, 2000.

    Article  CAS  PubMed  Google Scholar 

  15. Gugala Z, Gogolewski S. Differentiation, growth and activity of rat bone marrow stromal cells on resorbable poly(L/DL-lactide) membranes. Biomaterials 25(12):2299–307, 2004.

    Article  CAS  PubMed  Google Scholar 

  16. Ho ST and Hutmacher DW. A comparison of micro CT with other techniques used in the characterisation of scaffolds. Biomaterials 27(8):1362–76, 2006.

    Article  CAS  PubMed  Google Scholar 

  17. Hollinger JO, Brekke J, Gruskin E, Lee D. Role of bone substitutes. Clin Orthop Relat Res 324:55–65, 1996. doi:10.1097/00003086-199603000-00008

    Article  PubMed  Google Scholar 

  18. Hubbell JA. Materials as morphogenetic guides in tissue engineering. Curr Opin Biotechnol 14(5):551–8, 2003. doi:10.1016/j.copbio.2003.09.004

    Article  CAS  PubMed  Google Scholar 

  19. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–43, 2001.

    Article  CAS  PubMed  Google Scholar 

  20. Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues–state of the art and future perspectives. J Biomater Sci Polym Ed 12(1):107–24, 2001. doi:10.1163/156856201744489

    Article  CAS  PubMed  Google Scholar 

  21. Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55(2):203–16, 2001.

    Article  CAS  PubMed  Google Scholar 

  22. Kay S, Thapa A, Haberstroh KM, Webster TJ. Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. Tissue Eng 8(5):753–61, 2002.

    Article  CAS  PubMed  Google Scholar 

  23. Lee JH, Khang G, Lee JW, Lee HB. Interaction of Different Types of Cells on Polymer Surfaces with Wettability Gradient. J Colloid Interface Sci 205(2):323–330, 1998.

    Article  CAS  PubMed  Google Scholar 

  24. Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26(25):5158–66, 2005.

    Article  CAS  PubMed  Google Scholar 

  25. Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–86, 2004.

    Article  PubMed  Google Scholar 

  26. Manton KJ, Leong FM, Cool SM, Nurcombe V. Disruption of heparan and chondroitin sulfate signaling enhances mesenchymal stem cell derived osteogenic differentiation via BMP signaling pathways. Stem Cells 25(11):2845–54, 2007.

    Article  CAS  PubMed  Google Scholar 

  27. Park GE, Pattison MA, Park K, Webster TJ. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials 26(16):3075–82, 2005.

    Article  CAS  PubMed  Google Scholar 

  28. Rammelt S, Illert T, Bierbaum S, Scharnweber D, Zwipp H, Schneiders W. Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials 27(32):5561–71, 2006.

    Article  CAS  PubMed  Google Scholar 

  29. Rebouillat S, Letellier B, Steffino B. Wettability of single fibres-beyond the contact angle approach. Int J Adhesion & Adhesives 19:303–314, 1999. doi:10.1016/S0143-7496(99)00006-8

    Article  CAS  Google Scholar 

  30. Rentsch, C., B. Rentsch, A. Breier, A. Hofmann, S. Manthey, D. Scharnweber, A. Biewener, and H. Zwipp. Evaluation of the osteogenic potential and vascularization of 3D poly(3)hydroxybutyrate scaffolds subcutaneously implanted in nude rats. J. Biomed. Mater. Res. A, 2009 [Epub ahead of print].

  31. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–31, 2006.

    Article  CAS  PubMed  Google Scholar 

  32. Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci 4(8):743–65, 2004.

    Article  CAS  PubMed  Google Scholar 

  33. Schmack G, Gliesche K, Nitschke M and Werner C. Implantate auf Basis von Poly(3-hydroxybuttersäure). BIOmaterialien 3:21–25, 2002.

    Google Scholar 

  34. Schneiders, W., A. Reinstorf, M. Ruhnow, S. Rehberg, J. Heineck, I. Hinterseher, A. Biewener, H. Zwipp, and S. Rammelt. Effect of chondroitin sulphate on material properties and bone remodelling around hydroxyapatite/collagen composites. J. Biomed. Mater. Res. A 85(3):638–645, 2007.

    Google Scholar 

  35. Schulze M. Calibration of computer tomography system by applying photogrammetry approaches. Grün, A.; Kahmen H. (Eds.): Optical 3-D Measurement Techniques VIII. Vol., pp., Institute of Geodesy and Photogrammetry, ETH Zürich, 2007

    Google Scholar 

  36. Taipale J, Keski-Oja J. Growth factors in the extracellular matrix. FASEB J 11(1):51–9, 1997.

    CAS  PubMed  Google Scholar 

  37. Tomihata K, Suzuki M, Oka T Ikada Y. A new resorbable monofilament suture. Polym. Degrad. Stab. 59(51):13–18, 1998. doi:10.1016/S0141-3910(97)00183-3

    Article  CAS  Google Scholar 

  38. Tullberg-Reinert H, Jundt G. In situ measurement of collagen synthesis by human bone cells with a sirius red-based colorimetric microassay: effects of transforming growth factor beta2 and ascorbic acid 2-phosphate. Histochem Cell Biol 112(4):271–6, 1999.

    Article  CAS  PubMed  Google Scholar 

  39. van Susante JLC, Pieper J, Buma P, van Kuppevelt TH, van Beuningen H, van Der Kraan PM, Veerkamp JH, van den Berg WB, Veth RPH. Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro. Biomaterials 22(17):2359–69, 2001.

    Article  PubMed  Google Scholar 

  40. Wollenweber M, Domaschke H, Hanke T, Boxberger S, Schmack G, Gliesche K, Scharnweber D, Worch H. Mimicked bioartificial matrix containing chondroitin sulphate on a textile scaffold of poly(3-hydroxybutyrate) alters the differentiation of adult human mesenchymal stem cells. Tissue Eng 12(2):345–59, 2006.

    Article  CAS  PubMed  Google Scholar 

  41. Woodard JR, Hilldore AJ, Lan SK, Park CJ, Morgan AW, Eurell JA, Clark SG, Wheeler MB, Jamison RD, Wagoner Johnson AJ. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials 28(1):45–54, 2007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Bundesminesteriunm für Bildung und Forschung (0314041C) and the company Möckel embroidery and engineering (Auerbach, Germany) for producing the PCL scaffolds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbe Rentsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rentsch, B., Hofmann, A., Breier, A. et al. Embroidered and Surface Modified Polycaprolactone-Co-Lactide Scaffolds as Bone Substitute: In Vitro Characterization. Ann Biomed Eng 37, 2118–2128 (2009). https://doi.org/10.1007/s10439-009-9731-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9731-0

Keywords

Navigation