Skip to main content
Log in

Human-Urine Diabetes Assay and In Vivo Rat Bladder Assay Using a Fluorine-Doped Carbon Nanotube Catheter Sensor

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The creation of a novel biosensor consisting of a fluorine-doped carbon nanotube (FCN) was explored for use in cyclic voltammetric (CV) and square-wave stripping voltammetric (SW) glucose assay. In the experiment that was carried out in this study, analytical optimum conditions were attained at the low detection limit (S/N3) of 0.6 μg/L (3.3 × 10−9 M). In the 0.1 mg/L spike, the relative standard deviation of 0.607 (n = 15) was obtained. This was used for the diagnosis of the urine of patients with diabetes. Moreover, the catheter-type electrode (CE) can be inserted into a rat bladder through the rat’s organs. Thus, it can be connected with an electrochemical analyzer that can be fitted with an interface for the real-time in vivo analysis of metabolic glucose. The developed system can be used for organ treatment, biological analysis, and in vivo control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. P.W. Alexander, G.A. Rechnitz, Enzyme inhibition assays with an amperometric glucose biosensor based on a thiolate self-assembled monolayer, Electroanalysis 2000, 12, 343-350.

    Article  CAS  Google Scholar 

  2. S. G. Chang, S. J. Lee, C. H. Lee, J. I. Kim, Y. W. Kim, Expression of the human erythrocyte glucose transporter in transitional cell carcinoma of the bladder, Urology 55 (3), 2000, 448-452. doi:10.1016/S0090-4295(99)00474-4.

    Article  CAS  PubMed  Google Scholar 

  3. J.L.Chávez-Servín, A.I. Castellote, M. C. López-Sabater, Analysis of mono- and disaccharides in milk-based formulae by high-performance liquid chromatography with refractive index detection, J. Chromatogr. A, 1043 (2004) 211-215. doi:10.1016/j.chroma.2004.06.002.

    Article  PubMed  Google Scholar 

  4. S. Cortacero-Ramirez, A. Segura-Carretero, C. Cruces-Blanco, M. Hernainz-Bermudez de Castro, A. Fernandez-Gutierrez, Analysis of carbohydrates in beverages by capillary electrophoresis with precolumn derivatization and UV detection, Food Chem. 87 (2004)471-476. doi:10.1016/j.foodchem.2004.01.030.

    Article  CAS  Google Scholar 

  5. M.S. Damaser, N. Haugaard, B. Uvelius, Partial obstruction of the rat urinary bladder: effects on mitochondria and mitochondrial glucose metabolism in detrusor smooth muscle cells, Neurourol. Urodyn. 16:601-607 (1997). doi:10.1002/(SICI)1520-6777(1997)16:6<601::AID-NAU9>3.0.CO;2-I.

    Article  CAS  PubMed  Google Scholar 

  6. R.A. de Graaf, R.M. Dijkhuizen, G.J. Biessels, K.P.J. Braun, K. Nicolay, In vivo glucose detection by homonuclear spectral editing. Magn Reson Med 43:621-626, 2000, doi:10.1002/(SICI)1522-2594(200005)43:5<621::AID-MRM1>3.0.CO;2-3.

    Article  PubMed  Google Scholar 

  7. Eugenii K, Itamar W, Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics, ChemPhysChem 2004;5:1084-1104. doi:10.1002/cphc.200400193.

    Article  Google Scholar 

  8. T. Ferri, S. Maida, A. Poscia, R. Santucci, A glucose biosensor based on electro-enzyme catalyzed oxidation of glucose using a HRP-GOD layered assembly, Electroanalysis 2001, 13, No. 1, 1198-1202. doi:10.1002/1521-4109(200110)13:14<1198::AID-ELAN1198>3.0.CO;2-H.

    Article  CAS  Google Scholar 

  9. T. Huang, A. Warsinke, O.V. Koroljova-Skorobogatko, A. Makower, T. Kuwana, F.W. Scheller. A bienzyme carbon paste electrode for the sensitive detection of NADPH and the measurement of glucose-6-phosphate dehydrogenase, Electroanalysis 1999, 11, No. 295-300.

    Article  CAS  Google Scholar 

  10. J.A. Hypolite, P.A. Longhurst, N. Haugaard, R.M. Levin, Effect of partial outlet obstruction on 14C-adenine incorporation in the rabbit urinary Bladder, Neurourol. Urodyn. 16:201-208 (1997). doi:10.1002/(SICI)1520-6777(1997)16:3<201::AID-NAU9>3.0.CO;2-I.

    Article  CAS  PubMed  Google Scholar 

  11. Kazuhiko M, Jianling L, Yoshimi O, Tsuyoshi N, Zoran M, Boris Z, Surface structure and electrochemical characteristics of natural graphite fluorinated by ClF3, J Fluor Chem 2006;127:1383-1389. doi:10.1016/j.jfluchem.2006.06.012.

    Article  Google Scholar 

  12. S. Y. Ly, Detection of dopamine in the pharmacy with a carbon nanotube paste electrode using voltammetry, Bioelectrochemistry 68 (2005) 232–236.

    Google Scholar 

  13. S. Y. Ly (2006) Real-time voltammetric assay of cadmium ions in plant tissue and fish brain core. Bull Korean Chem Soc 27(10):1613–1617

    Article  CAS  Google Scholar 

  14. K.B. Male, P. O. Gartu, A. A. Kamen, J.H.T. Luong, On-line monitoring of glucose in mammalian cell culture using a flow injection analysis (FIA) mediated biosensor, Biotechnol. Bioeng., vol 55, No. 3, 1997, 497-504.

    Article  CAS  PubMed  Google Scholar 

  15. S.A. M. Marzouk, H.E.M. Sayour, A.M. Ragab, W.E. Cascio, S.S.M. Hassan, A simple FIA-system for simultaneous measurements of glucose and lactate with amperometric detection, Electroanalysis 2000, 12, No. 11304-11311.

    Article  Google Scholar 

  16. F.D. Morgenthaler, D.M. Koski, R.Kraftsik, P.-G. Henry, R. Gruetter, Biochemical quantification of total brain glycogen concentration in rats under different glycemic states, Neurochem. Int. 48 (2006) 616-622.

    CAS  PubMed  Google Scholar 

  17. Nakajima T, Gupta V, Ohzawa Y, Groult H, Mazej Z, Zemva B, Influence of cointercalated HF on the electrochemical behavior of highly fluorinated graphite, J Power Sources 2004;137:80-87.

    CAS  Google Scholar 

  18. P.C. Pandey, S. Upadhyay, H.C. Pathak, A new glucose sensor based on encapsulated glucose oxidase within organically modified sol-gel glass, Sensors Actuators B 60 1999 83-89. doi:10.1016/S0925-4005(99)00246-4.

    Article  Google Scholar 

  19. A.S. Quadros, R. Sarmento-Leite, M. Bertoluci, K. Duro, A. Schmidt, G. De Lucca Jr, B.D. Schaan, Angiographic coronary artery disease is associated with progressively higher levels of fasting plasma glucose, Diabetes Research and Clinical Practice 75 (2007) 207-213. doi:10.1016/j.diabres.2006.06.003.

    Article  CAS  PubMed  Google Scholar 

  20. D. Schuber, Glucose metabolism and Alzheimer’s disease, Ageing Res. Rev. 4 (2005) 240-257. doi:10.1016/j.arr.2005.02.003.

    Article  Google Scholar 

  21. Susumu Y, Masahiro Y, Masayuki T, Surface fluorination of the cathode active materials for lithium secondary battery, J Fluor Chem 2004;125:1657-1661. doi:10.1016/j.jfluchem.2004.09.004.

    Article  Google Scholar 

  22. E.A. Ulasova, L. Micheli, L. Vasii, D. Moscone, G. Palleschi, S.V. Vdovichev, A.V. Zorin, S.A. Krutovertsev, E.E. Karyakina, A.A. Karyakin, Flow-Injection analysis of residual glucose in wines using a semiautomatic analyzer equipped with a Prussian blue-based biosensor, Electroanalysis 2003,15, 447-451. doi:10.1002/elan.200390052.

    Article  CAS  Google Scholar 

  23. Q. Wang, F. Ding, N. Zhu, P. He, Y. Fang, Determination of the compositions of polysaccharides from Chinese herbs by capillary zone electrophoresis with amperometric detection, Biomed. Chromatogr., 17, 483-488(2003). doi:10.1002/bmc.267.

    Article  CAS  PubMed  Google Scholar 

  24. L. Wang, Y. Dong, X. Yu, D.H. Shangguan, R. Zhao, H.W. Han, G.Q. Liu, analysis of glucose and lactate in dialysate from hypothalamus of rats after exhausting swimming using microdialysis, Biomed. Chromatogr. 16, 427-431(2002) doi:10.1002/bmc.177.

    Article  CAS  PubMed  Google Scholar 

  25. J. Wang, J. Lu, S. Y. Ly, M. Vuki, B. Tian, W. K. Adeniyi, R. A. Armendariz (2000) Lab-on-a-cable for electrochemical monitoring of phenolic contaminants. Anal Chem 72:2659–2663. doi:10.1021/ac991054y

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suw Young Ly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ly, S.Y., Lee, J.H. Human-Urine Diabetes Assay and In Vivo Rat Bladder Assay Using a Fluorine-Doped Carbon Nanotube Catheter Sensor. Ann Biomed Eng 37, 2028–2033 (2009). https://doi.org/10.1007/s10439-009-9714-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9714-1

Keywords

Navigation