Skip to main content
Log in

Time-dependent Changes in Smooth Muscle Cell Stiffness and Focal Adhesion Area in Response to Cyclic Equibiaxial Stretch

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Observations from diverse studies on cell biomechanics and mechanobiology reveal that altered mechanical stimuli can induce significant changes in cytoskeletal organization, focal adhesion complexes, and overall mechanical properties. To investigate effects of short-term equibiaxial stretching on the transverse stiffness of and remodeling of focal adhesions in vascular smooth muscle cells, we developed a cell-stretching device that can be combined with both atomic force and confocal microscopy. Results demonstrate that cyclic 10%, but not 5%, equibiaxial stretching at 0.25 Hz significantly and rapidly alters both cell stiffness and focal adhesion associated paxillin and vinculin. Moreover, measured changes in stiffness and focal adhesion area from baseline values tend to correlate well over the durations of stretching studied. It is suggested that remodeling of focal adhesions plays a critical role in regulating cell stiffness by recruiting and anchoring actin filaments, and that cells rapidly remodel in an attempt to maintain a homeostatic biomechanical state when perturbed above a threshold value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Balaban, N. Q., Schwarz, U. S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., Mahalu, D., Safran, S., Bershadsky, A., Addadi, L., Geiger, B., 2001. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3, 466–473.

    Article  PubMed  CAS  Google Scholar 

  2. Beatty, M. F., Usmani, S. A., 1975. On the indentation of a highly elastic half-space. Q. J. Mech. Appl. Math. 28, 47–62.

    Article  Google Scholar 

  3. Chiquet, M., 1999. Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biol. 18, 417–426.

    Article  PubMed  CAS  Google Scholar 

  4. Costa, K. D., Hucker, W. J., Yin, F. C.-P., 2002. Buckling of actin stress fibers: a new wrinkle in the cytoskeletal tapestry. Cell Motil. Cytoskeleton 52, 266–274.

    Article  PubMed  Google Scholar 

  5. Costa, K. D., Yin, F. C.-P., 1999. Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy. ASME J. Biomech. Eng. 121, 462–471.

    CAS  Google Scholar 

  6. Crick, S. L., Yin, F. C.-P., 2007. Assessing micromechanical properties of cells with atomic force microscopy: importance of the contact point. Biomech. Model Mechanobiol. 6, 199–210.

    Article  PubMed  CAS  Google Scholar 

  7. Cukierman, E., Pankov, R., Stevens, D. R., Yamada, K. M., 2001. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712.

    Article  PubMed  CAS  Google Scholar 

  8. Cunningham, J. J., Linderman, J. J., Mooney, D. J., 2002. Externally applied cyclic strain regulates localization of focal contact components in cultured smooth muscle cells. Ann. Biomed. Eng. 30, 927–935.

    Article  PubMed  Google Scholar 

  9. Deguchi, S., Ohashi, T., Sato, M. 2006. Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells. J. Biomech. 39, 2603–2611.

    Article  PubMed  Google Scholar 

  10. Deng, L., Fairbank, N. J., Fabry, B., Smith, P. G., Maksym, G. N., 2004. Localized mechanical stress induces time-dependent actin cytoskeletal remodeling and stiffening in cultured airway smooth muscle cells. Am J Physiol Cell Physiol 287, C440–C448.

    Article  PubMed  CAS  Google Scholar 

  11. Goffin, J. M., Pittet, P., Csucs, G., Lussi, J. W., Meister, J.-J., Hinz, B., 2006. Focal adhesion size controls tension-independent recruitment of α-smooth muscle actin to stress fibers. J. Cell Biol. 172, 259–268.

    Article  PubMed  CAS  Google Scholar 

  12. Goldschmidt, M. E., McLeod, K. J., Taylor, W. R., 2001. Integrin-mediated mehano-transduction in vascular smooth muscle cells: frequency and force response characteristics. Circ. Res. 88, 674–680.

    Article  PubMed  CAS  Google Scholar 

  13. Grinnell, F., 2003. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol. 13, 264–269.

    Article  PubMed  CAS  Google Scholar 

  14. Hayakawa, K., Sato, N., Obinata, T., 2001. Dynamic reorientation of cultured cells and stress fibers under mechanical stress from periodic stretching. Exp. Cell Res. 268, 104–114.

    Article  PubMed  CAS  Google Scholar 

  15. Hinz, B., 2006. Masters and servants of the force: the role of matrix adhesions in myofibroblasts force perception and transmission. Eur. J. Cell Biol. 85, 175–181.

    Article  PubMed  CAS  Google Scholar 

  16. Hu, K., Applegate, K. T., Danuser, G., Waterman-Storer, C. M., 2007. Differential transmission of actin motion within focal adhesion. Science 315, 111–115.

    Article  PubMed  CAS  Google Scholar 

  17. Huang, H., Kamm, R. D., Lee, R. T., 2004. Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am. J. Physiol. Cell Physiol. 287, C1–C11.

    Article  PubMed  CAS  Google Scholar 

  18. Huang, H., Sylvan, J., Jonas, M., Barresi, R., So, P. T. C., Campbell, K. P., Lee, R. T., 2005. Cell stiffness and receptors: evidence for cytoskeletal subnetworks. Am. J. Physiol. Cell Physiol. 288, C72–C80.

    PubMed  CAS  Google Scholar 

  19. Humphrey, J. D. Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem. Biophys., 2008 (in press).

  20. Humphrey, J. D., Vawter, D. L., Vito, R. P., 1987. Quantification of strains in biaxially tested soft tissues. J. Biomech. 20, 59–65.

    Article  PubMed  CAS  Google Scholar 

  21. Ingber, D. E., 2002. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ. Res. 91, 877–887.

    Article  PubMed  CAS  Google Scholar 

  22. Kim, B. S., Nikolovski, J., Bonadio, J., Mooney, D. J., 1999. Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat. Biotechnol. 17, 979–983.

    Article  PubMed  CAS  Google Scholar 

  23. Kumar, S., Maxwell, I. Z., Heisterkamp, A., Polte, T. R., Lele, T. P., Salanga, M., Mazur, E., Ingber, D. E., 2006. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90, 3762–3773.

    Article  PubMed  CAS  Google Scholar 

  24. Li, C., Xu, Q., 2000. Mechanical stress-initiated signal transductions in vascular smooth muscle cells. Cell. Signal. 12, 435–445.

    Article  PubMed  CAS  Google Scholar 

  25. Mizutani, T., Haga, H., Kawabata, K., 2004. Cellular stiffness response to external deformation: tensional homeostasis in a single fibroblast. Cell Motil. Cytoskeleton 59, 242–248.

    Article  PubMed  CAS  Google Scholar 

  26. Pender, N., McCulloch, C. A. G., 1991. Quantitation of actin polymerization in two human fibroblast sub-types responding to mechanical stretching. J. Cell Sci. 100, 187–193.

    PubMed  CAS  Google Scholar 

  27. Pourati J., Maniotis A., Spiegel D., Schaffer J. L., Butler J. P., Fredberg J. J., Ingber D. E., Stamenovic D., Wang N. 1998. Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? Am. J. Physiol. 274, C1283–1289.

    PubMed  CAS  Google Scholar 

  28. Reusch, P., Wagdy, H., Reusch, R., Wilson, E., Ives, H. E., 1996. Mechanical strain increases smooth muscle and decreases nonmuscle myosin expression in rat vascular smooth muscle cells. Circ. Res. 79, 1046–1053.

    PubMed  CAS  Google Scholar 

  29. Rico, F., Roca-Cusachs, P., Gavara, N., Farre, R., Rotger, M., Navajas, D., 2005. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys. Rev. E 72, 021914-1–021914-10.

    Article  CAS  Google Scholar 

  30. Romer, L. H., Birukov K. G., Garcia J. G. N., 2006. Focal adhesions: paradigm for a signaling nexus. Circ. Res. 98, 606–616.

    Article  PubMed  CAS  Google Scholar 

  31. Saez A. O., Zhang W., Wu Y., Turner C. E., Tang D. D., Gunst S. J. 2004. Tension development during contractile stimulation of smooth muscle requires recruitment of paxillin and vinculin to the membrane. Am. J. Physiol. Cell Physiol. 286, C433–C447.

    Article  CAS  Google Scholar 

  32. Sawada, Y., Sheetz, M. P., 2002. Force transduction by triton cytoskeleton. J. Cell Biol. 156, 609–615.

    Article  PubMed  CAS  Google Scholar 

  33. Smith, P. G., Deng, L., Fredberg, J. J., Maksym, G. N., 2003. Mechanical strain increases cell stiffness through cytoskeletal filament reorganization. Am. J. Physiol. Lung Cell. Mol. Physiol. 285, L456–L463.

    PubMed  CAS  Google Scholar 

  34. Smith, P. G., Garcia, R., Kogerman, L., 1997. Strain reorganizes focal adhesions and cytoskeleton in cultured airway smooth muscle cells. Exp. Cell Res. 232, 127–136.

    Article  PubMed  CAS  Google Scholar 

  35. Smith, B. A., Tolloczko, B., Martin, J. G., Grutter, P., 2005. Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist. Biophys. J. 88, 2994–3007.

    Article  PubMed  CAS  Google Scholar 

  36. Sumpio B. E., Banes A. J., Levin L. G., Johnson G. Jr., 1987. Mechanical stress stimulates aortic endothelial cells to proliferate. J. Vasc. Surg. 6, 252–256.

    Article  PubMed  CAS  Google Scholar 

  37. Takemasa, T., Yamaguchi, T., Yamamoto, Y., Sutimoto, K., Yamashita, K., 1998. Oblique alignment of stress fibers in cells reduces the mechanical stress in cyclically deforming fields. Eur. J. Cell Biol. 77, 91–99.

    PubMed  CAS  Google Scholar 

  38. Tan, J. L., Tien, J., Pirone, D. M., Gray, D. S., Bhadriraju, K., Chen, C. S., 2003. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl. Acad. Sci. 100, 1484–1489.

    Article  PubMed  CAS  Google Scholar 

  39. Theriot, J. A., 1994. Regulation of the actin cytoskeleton in living cells. Semin. Cell Biol., 5, 193–199.

    Article  PubMed  CAS  Google Scholar 

  40. Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C., Brown, R. A., 2002. Myofibroblasts and mechanoregulation of connective tissue remodeling. Nat. Rev. Mol. Cell Biol. 3, 349–363.

    Article  PubMed  CAS  Google Scholar 

  41. Trache, A., Meininger, G. A., 2005. Atomic force-multi-optical imaging integrated microscope for monitoring molecular dynamics in live cells. J. Biomed. Optics 10, 064023-1–064023-17.

    Google Scholar 

  42. Trache A., Trzeciakowski J. P., Gardiner L., Sun Z., Muthuchamy M., Guo M., Yuan S. Y., Meininger G. A. 2005. Histamine effects on endothelial cell fibronectin interaction studied by atomic force microscopy. Biophys. J. 89, 2888–2898.

    Article  PubMed  CAS  Google Scholar 

  43. Trzeciakowski, J., and G. A. Meininger. Software for analysis of atomic force data, 2004. Copyright.

  44. Vliet, K. J. V., Bao, G., Suresh, S., 2003. The biomechanics toolbox: experimental approaches for living cells and biomolecules. Acta Mater. 51, 5881–5905.

    Article  CAS  Google Scholar 

  45. Wang, J. H.-C., Goldschmidt-Clermont, P., Moldovan, N., Yin, F. C.-P., 2000. Leukotrienes and tyrosine phosphorylation mediate stretching-induced actin cytoskeletal remodeling in endothelial cells. Cell Motil. Cytoskeleton 46, 137–145.

    Article  PubMed  CAS  Google Scholar 

  46. Wang, J. H.-C., Goldschmidt-Clermont, P., Wille, J., Yin, F. C.-P., 2001. Specificity of endothelial cell reorientation in response to cyclic mechanical stretching. J. Biomech. 34, 1563–1572.

    Article  PubMed  CAS  Google Scholar 

  47. Wang, N., Tolic-Norrelykke I. M., Chen, J., Mijailovich, S. M., Butler, J. P., Fredberg, J. J., Stamenovic, D., 2002. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am. J. Physiol. Cell Physiol. 282, C606–C616.

    PubMed  CAS  Google Scholar 

  48. Wu, H. W., Kuhn, T., Moy, V. T., 1998a. Mechanical properties of L929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking. Scanning 20, 389–397.

    Article  PubMed  CAS  Google Scholar 

  49. Wu, X., Mogford, J. E., Platts, S. H., Davis, G. E., Meininger, G. A., Davis, M. J., 1998b. Modulation of calcium current in arteriolar smooth muscle by alphav beta3 and alpha5 beta1 integrin ligands. J. Cell Biol. 143, 241–252.

    Article  PubMed  CAS  Google Scholar 

  50. Yoshigi, M., Clark, E. B., Yost, H. J., 2003. Quantification of stretch-induced cytoskeletal remodeling in vascular endothelial cells by image processing. Cytometry Part A 55A, 109–118.

    Article  Google Scholar 

  51. Yoshigi, M., Hoffman, L. M., Jensen, C. C., Yost, H. J., Beckerle, M. C., 2005. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J. Cell Biol. 171, 209–215.

    Article  PubMed  CAS  Google Scholar 

  52. Zhu, C., Bao, G., Wang, N., 2000. Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu. Rev. Biomed. Eng. 2, 189–226.

    Article  PubMed  CAS  Google Scholar 

  53. Zimerman, B., Volberg, T., Geiger, B., 2004. Early molecular events in the assembly of the focal adhesion-stress fiber complex during fibroblast spreading. Cell Motil. Cytoskeleton 58, 143–159.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported, in part, by a Special Opportunity Award from the Whitaker Foundation as well as NIH grants HL-64372 and HL-76319 (to JDH), HL-58960 (to GAM), and Shared Instrumentation Grant SIORR-019403 (to GAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Humphrey.

Appendix

Appendix

Assume that, relative cylindrical coordinates, when a membrane is stretched equibiaxially (μ r  = μ θ  = μ), it has an isochoric, axisymmetric, and homogeneous deformation of the form, r = μR, θ = Θ, z = λZ, where (R, Θ, Z) and (r, θ, z) are particle coordinates in an unstretched reference and a stretched current configuration, respectively, with μ and λ constants at each level of stretch. Hence, the physical components of deformation gradient F are

$$ [{\mathbf{F}}] = {\left[ {\begin{array}{*{20}c} {{\partial r/\partial R}} & {0} & {0} \\ {0} & {{r/R}} & {0} \\ {0} & {0} & {\lambda } \\ \end{array} } \right]} = {\left[ {\begin{array}{*{20}c} {\mu } & {0} & {0} \\ {0} & {\mu } & {0} \\ {0} & {0} & {\lambda } \\ \end{array} } \right]}, $$
(A1)

with \( \lambda = 1/\mu ^{2} \) from incompressibility (i.e., detF = 1). Since the membrane is thin, we can reduce F from 3D to 2D. Hence, consider the equibiaxial field

$$ [{\mathbf{F}}_{{2{\text{D}}}} ] = {\left[ {\begin{array}{*{20}c} {\mu } & {0} \\ {0} & {\mu } \\ \end{array} } \right]}. $$
(A2)

Cartesian coordinates are obtained by rotating cylindrical coordinates through an angle \( \hat{\theta } \) about the axis perpendicular to the membrane. Thus,

$$ {\mathbf{e}}_{x} = {\text{cos}}\,\hat{\theta }{\mathbf{e}}_{r} + {\text{sin}}\,\hat{\theta }{\mathbf{e}}_{\theta } ,\quad {\mathbf{e}}_{y} = - {\text{sin}}\,\hat{\theta }{\mathbf{e}}_{r} + {\text{cos}}\,\hat{\theta }{\mathbf{e}}_{\theta } . $$
(A3)

Components of the 2D left Cauchy-Green tensor, \( \overline{{\mathbf{B}}} = \overline{{\mathbf{F}}} _{{2{\text{D}}}} \overline{{\mathbf{F}}} ^{{\text{T}}}_{{2{\text{D}}}} \), defined relative to a Cartesian coordinate system are thus determined as

$$ \overline{{\mathbf{B}}} = {\mathbf{ABA}}^{{\text{T}}} \quad {\text{or}}\quad \ifmmode\expandafter\bar\else\expandafter\=\fi{B}_{{ij}} = A_{{ik}} A_{{jl}} B_{{kl}} , $$
(A4)

where \( [{\mathbf{A}}] = {\left[ {\begin{array}{*{20}c} {{{\text{cos}}\,\hat{\theta }}} & {{{\text{sin}}\,\hat{\theta }}} \\ {{ - {\text{sin}}\,\hat{\theta }}} & {{{\text{cos}}\,\hat{\theta }}} \\ \end{array} } \right]} \) and B is the left Cauchy-Green tensor “for” the cylindrical coordinate system. Substituting A into Eq. (A4) gives

$$ {\left[ {\begin{array}{*{20}c} {{\ifmmode\expandafter\bar\else\expandafter\=\fi{B}_{{11}} }} & {{\ifmmode\expandafter\bar\else\expandafter\=\fi{B}_{{12}} }} \\ {{\ifmmode\expandafter\bar\else\expandafter\=\fi{B}_{{21}} }} & {{\ifmmode\expandafter\bar\else\expandafter\=\fi{B}_{{22}} }} \\ \end{array} } \right]} = {\left[ {\begin{array}{*{20}c} {{{\text{cos}}\,\hat{\theta }}} & {{{\text{sin}}\,\hat{\theta }}} \\ {{ - {\text{sin}}\,\hat{\theta }}} & {{{\text{cos}}\,\hat{\theta }}} \\ \end{array} } \right]}{\left[ {\begin{array}{*{20}c} {{B_{{11}} }} & {{B_{{12}} }} \\ {{B_{{21}} }} & {{B_{{22}} }} \\ \end{array} } \right]}{\left[ {\begin{array}{*{20}c} {{{\text{cos}}\,\hat{\theta }}} & {{ - {\text{sin}}\,\hat{\theta }}} \\ {{{\text{sin}}\,\hat{\theta }}} & {{{\text{cos}}\,\hat{\theta }}} \\ \end{array} } \right]}. $$
(A5)

Thus,

$$ \begin{aligned}{} \overline{B} _{{11}} = & B_{{11}} \cos ^{2} \hat{\theta } + B_{{22}} \sin ^{2} \hat{\theta }, \\ \overline{B} _{{12}} = & -B_{{11}} \sin \hat{\theta }\cos \hat{\theta } + B_{{22}} \sin \hat{\theta }\cos \hat{\theta }, \\ \overline{B} _{{22}} = & B_{{11}} \sin ^{2} \hat{\theta } + B_{{22}} \cos ^{2} \hat{\theta }, \\ \end{aligned} $$
(A6)

with \( \ifmmode\expandafter\bar\else\expandafter\=\fi{B}_{{21}} = \ifmmode\expandafter\bar\else\expandafter\=\fi{B}_{{12}} \).

Since \( B_{{11}} = B_{{22}} = \mu ^{2} \) in this problem,

$$ \ifmmode\expandafter\bar\else\expandafter\=\fi{B}_{{11}} = B_{{11}} = B_{{22}} = \ifmmode\expandafter\bar\else\expandafter\=\fi{B}_{{22}} \quad {\text{with}}\quad \ifmmode\expandafter\bar\else\expandafter\=\fi{B}_{{12}} = \ifmmode\expandafter\bar\else\expandafter\=\fi{B}_{{21}} = 0. $$
(A7)

Therefore, components of deformation gradient relative to cylindrical coordinates are the same as those relative any Cartesian coordinate system, thus the deformation is equibiaxial independent of coordinate system.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Na, S., Trache, A., Trzeciakowski, J. et al. Time-dependent Changes in Smooth Muscle Cell Stiffness and Focal Adhesion Area in Response to Cyclic Equibiaxial Stretch. Ann Biomed Eng 36, 369–380 (2008). https://doi.org/10.1007/s10439-008-9438-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9438-7

Keywords

Navigation