Skip to main content
Log in

Three-Dimensional Finite Element Models of the Human Pubic Symphysis with Viscohyperelastic Soft Tissues

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Three-dimensional finite element (FE) models of human pubic symphyses were constructed from computed tomography image data of one male and one female cadaver pelvis. The pubic bones, interpubic fibrocartilaginous disc and four pubic ligaments were segmented semi-automatically and meshed with hexahedral elements using automatic mesh generation schemes. A two-term viscoelastic Prony series, determined by curve fitting results of compressive creep experiments, was used to model the rate-dependent effects of the interpubic disc and the pubic ligaments. Three-parameter Mooney-Rivlin material coefficients were calculated for the discs using a heuristic FE approach based on average experimental joint compression data. Similarly, a transversely isotropic hyperelastic material model was applied to the ligaments to capture average tensile responses. Linear elastic isotropic properties were assigned to bone. The applicability of the resulting models was tested in bending simulations in four directions and in tensile tests of varying load rates. The model-predicted results correlated reasonably with the joint bending stiffnesses and rate-dependent tensile responses measured in experiments, supporting the validity of the estimated material coefficients and overall modeling approach. This study represents an important and necessary step in the eventual development of biofidelic pelvis models to investigate symphysis response under high-energy impact conditions, such as motor vehicle collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.

Similar content being viewed by others

REFERENCES

  1. Alonso, J. E., J. Lee, A. R. Burgess, and B. D. Browner. The management of complex orthopaedic injuries. Surg. Clin. North Am. 76(4):879–903, 1996.

    Article  PubMed  CAS  Google Scholar 

  2. Alves, M. L., J. L. M. Fernandes, J. M. C. Rodrigues, and P. A. F. Martins. Finite element remeshing in metal forming using hexahedral elements. J. Mater. Process. Tech. 141(3):395–403, 2003.

    Article  Google Scholar 

  3. Anderson, A. E., C. L. Peters, B. D. Tuttle, and J. A. Weiss. Subject-specific finite element model of the pelvis: Development, validation and sensitivity studies. J. Biomech. Eng. 127(3):364–373, 2005.

    Article  PubMed  Google Scholar 

  4. Athanasiou, K. A., M. P. Rosenwasser, and J. A. Buckwalter. Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J. Orthop. Res. 9(3):330–340, 1991.

    Article  PubMed  CAS  Google Scholar 

  5. Bradshaw, R. D., and L. C. Brinson. A sign control method for fitting and interconverting material functions for linearly viscoelastic solids. Mech. Time-Depend. Mat. 1:85–108, 1997.

    Article  Google Scholar 

  6. Cifuentes, A. O., and A. Kalbag. A performance study of tetrahedral and hexahedral elements in 3-D finite element structure analysis. Finite Elem. Anal. Des. 12:313–318, 1992.

    Article  Google Scholar 

  7. Dakin, G. J., R. A. Arbelaez, F. J. Molz, J. E. Alonso, K. A. Mann, and A. W. Eberhardt. Elastic and viscoelastic properties of the human pubic symphysis joint: effects of lateral impact loading. J. Biomech. Eng. 123(3):218–226, 2001.

    Article  PubMed  CAS  Google Scholar 

  8. Dalstra, M., and R. Huiskes. Load transfer across the pelvic bone. J. Biomech. 28(6):715–724, 1995.

    Article  PubMed  CAS  Google Scholar 

  9. Danto, M. I., and S. L. Woo. The mechanical properties of skeletally mature rabbit anterior cruciate ligament and patellar tendon over a range of strain rates. J. Orthop. Res. 11(1):58–67, 1993.

    Article  PubMed  CAS  Google Scholar 

  10. Dawson, J. M., B. V. Khmelniker, and M. P. McAndrew. Analysis of the structural behavior of the pelvis during lateral impact using finite element method. Accident Anal. Prev. 31:109–119, 1999.

    Article  CAS  Google Scholar 

  11. Flynn, D. M., G. D. Peura, P. Grigg, and A. H. Hoffman. A finite element based method to determine the properties of plantar soft tissues. J. Biomech. Eng. 120(2):202–210, 1998.

    Article  PubMed  CAS  Google Scholar 

  12. Frey, P. J., H. Borouchaki, and P. George. Delaunay tetrahedralization using advanced front approach. Proceedings of 5th International Meshing Roundtable, SAND’96, 1996, pp. 31–46.

  13. Fung, Y. C. “Bioviscoelastic solids.” In: Biomechanics: Mechanical Properties of Soft Tissues. New York: Springer-Verlag, 1993, pp. 242–320.

    Google Scholar 

  14. Gamble, J. G., S. C. Simmons, and M. Freedman. The symphysis pubis: anatomical and pathological considerations. Clin. Orthop. Relat. Res. 203:251–272, 1986.

    Google Scholar 

  15. Gardiner, J. C., and J. A. Weiss. Subject–specific finite element analysis of the human medial collateral ligament during valgus knee loading. J. Orthop. Res. 21(6):1098–1106, 2003.

    Article  PubMed  Google Scholar 

  16. Haut, R. C., and R. W. Little. A constitutive equation for collagen fibers. J. Biomech. 5(5):423–430,1972.

    Article  PubMed  CAS  Google Scholar 

  17. Herzog, W., S. Diet, E. Suter, P. Mayzus, T. R. Leonard, C. Müller, J. Z. Wu, and M. Epstein. Material and functional properties of articular cartilage and patellofemoral contact mechanics in an experimental model of osteoarthritis. J. Biomech. 31(12):1137–1145, 1998.

    Article  PubMed  CAS  Google Scholar 

  18. Hibbeler, R. C. Material of Mechanics, Third Edition. Upper Saddle River: Prentics-Hall, Inc., 1997, pp. 856.

  19. Jackes, M. K. Pubic symphysis age distributions. Am. J. Phys. Anthropol. 68(2):281–299, 1985.

    Article  PubMed  CAS  Google Scholar 

  20. Johnston, J. D., F. S. Small, M. L. Bouxsein, and D. R. Pichora. Mechanical properties of the scapholunate ligament correlate with bone mineral density measurements of the hand. J. Orthop. Res. 22(4):867–871, 2004.

    Article  PubMed  Google Scholar 

  21. LaBan, M. M., J. R. Meerschaert, R. S. Taylor, and H. D. Tabor. Symphyseal and sacroiliac joint pain associated with pubic symphysis instability. Arch. Phys. Med. Rehab. 59(10):470–472, 1978.

    CAS  Google Scholar 

  22. Li, G., R. Jayaseelan, and W. Gerstle. Investigation of hexahedral elements generated from tetrahedral elements. Proceedings of the 7th International Conference, Numerical Grid Generation in Computational Field Simulations, the International Society of Grid Generation, MSU, Mississippi, 2000, pp. 315–323.

  23. Li, L. P., M. D. Buschmann, and A. Shirazi-Adl. A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogenous response in unconfined compression. J. Biomech. 33(12):1533–1541, 2000.

    Article  PubMed  CAS  Google Scholar 

  24. Little, R. B., H. W. Wevers, D. Siu, and T. D. Cooke. A three-dimensional finite element analysis of the upper tibia. J. Biomech. Eng. 108(2):111–119, 1986.

    PubMed  CAS  Google Scholar 

  25. Lorensen, W. E., and H. E. Cline. Marching cubes: A high resolution 3D surface construction algorithm. Comput. Graphics 21(6):163–169, 1987.

    Google Scholar 

  26. Majumder, S., A. Roychowdhury, and S. Pal. Dynamic response of the pelvis under side impact load – a three-dimensional finite element approach. Int. J. Crashworthiness 9(1):89–103, 2004.

    Article  Google Scholar 

  27. Meissner, A., M. Fell, R. Wilk, U. Boenick, and R. Rahmanzadeh. Biomechanics of pubic symphysis: Which forces lead to mobility of the symphysis in physiological conditions. Unfallchirurg 99(6):415–421, 1996.

    PubMed  CAS  Google Scholar 

  28. Mkandawire, N. C., D. A. Boot, I. J. Braithwaite, and M. Patersson. Musculoskeletal recovery 5 years after severe injury: long term problems are common. Injury, Int. J. Care Injured 33(2):111–115, 2002.

    Google Scholar 

  29. Mow, V. C., and R. Anthony. Structural and function of articular cartilage and meniscus. In: Basic Orthopaedic Biomechanics, Second Edition. New York: Lippincott-Raven Publishers, pp. 113–177, 1997.

  30. Nieminen, M. T., J. Töyräs, M. S. Laasanen, J. Silvennoinen, H. J. Helminen, and J. S. Jurvelin. Prediction of biomechanical properties of articular cartilage with quantitative magnetic resonance imaging. J. Biomech. 37(3):321–328, 2004.

    Article  PubMed  Google Scholar 

  31. Nowalk, M. D., and S. E. Logan. Distinguishing biomechanical properties of intrinsic and extrinsic human wrist ligaments. J. Biomech. Eng. 113(1):85–93, 1991.

    Article  PubMed  CAS  Google Scholar 

  32. Pick, T. P., and R. Howden. Gray's anatomy. New York: Bounty Books, 1977, pp. 244–245.

  33. Piloletti, D. P., L. R. Rakotomanana, and P. F. Leyvraz. Strain rate effects on the mechanical behavior of the anterior cruciate ligament-bone complex. Med. Eng. Phys. 21(2):95–100, 1999.

    Article  Google Scholar 

  34. Piloletti, D. P., and L. R. Rakotomanana. Nonlinear viscoelastic laws for soft biological tissues. Eur. J. Mech. A-Solids 19(5):749–759, 2000.

    Article  Google Scholar 

  35. Plummer, J. W., A. W. Eberhardt, J. E. Alonso, and K. A. Mann. Parametric tests of the human pelvis: the influence of load rate and boundary condition on peak stress location during simulated side impact. Advances in Bioeng ASME1998 BED 39:165–166, 1998.

    Google Scholar 

  36. Puso, M. A., and J. A. Weiss. Finite element implementation of anisotropic quasilinear viscoelasticity using a discrete spectrum approximation. J. Biomech. Eng. 120(1):62–70, 1998.

    Article  PubMed  CAS  Google Scholar 

  37. Quapp, K. M., and J. A. Weiss. Material characterization of human medial collateral ligament. J. Biomech. Eng. 120(6):757–763, 1998.

    Article  PubMed  CAS  Google Scholar 

  38. Renaudin, F., H. Guillemot, F. Lavaste, W. Skalli, F. Lesage, and C. Pecheux. A 3D finite element model of pelvis in side impact. Proceedings of the 37th Stapp Car Crash Conference, SAE 933130, 1993, pp. 249–259.

  39. Sgambati, E., A. Stecco, L. Capaccioli, and E. Brizzi. Morphometric evaluation of the sympysis pubis joint. Ital. J. Anat. Embryol. 101(3):195–201,1996.

    PubMed  CAS  Google Scholar 

  40. Simo, J. C. On a fully three-demensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput. Meth. Appl. Mech. Eng. 60(2) 153–173, 1987.

    Article  Google Scholar 

  41. Tohno, S., Y. Tohno, T. Minami, Y. Okazaki, M. Utsumi, Y. Moriwake, F. Nishiwaki, and M. Yamada. High accumulations of calcium and phosphorus in women's pubic symphysis. Biol. Trace Elem. Res. 59:177–185, 1997.

    Article  PubMed  CAS  Google Scholar 

  42. Tönük, E., and M. B. Silver-Thorn. Nonlinear viscoelastic material property estimation of lower extremity residual limb tissues. J. Biomech. Eng. 126(2):289–300, 2004.

    Article  PubMed  Google Scholar 

  43. Vannah, W. M., and D. S. Childress. Indentor tests and finite element modeling of bulk muscular tissue in vivo. J. Rehabil. Res. Dev. 33(3):239–252, 1996.

    PubMed  CAS  Google Scholar 

  44. Walheim, G. G., S. Olerud, and T. Ribble. Mobility of the pubic symphysis: measurements by an electromechanical method. Acta Orthop. Scand. 55(2):203–208, 1984.

    Article  PubMed  CAS  Google Scholar 

  45. Weber, K., B. Vock, W. Müler, and A. Wentzensen. Rupture of the pubic symphysis: diagnosis, treatment and clinical outcome. Ann. Saudi Med. 19(6):544–546, 1999.

    PubMed  CAS  Google Scholar 

  46. Weiss, J. A., B. N. Maker, and S. Govindjee. Finite element implementation of incompressible, transversely isotropic hyperealsticity. Comput. Meth. Appl. Mech. Eng. 135(1):107–128, 1996.

    Article  Google Scholar 

  47. Woo, S. L., M. A. Gomez, and W. H. Akeson. The time and history-dependent viscoelastic properties of the canine medial collateral ligaments. J. Biomech. Eng. 103(4):293–298, 1981.

    Article  PubMed  CAS  Google Scholar 

  48. Wu, J. Z., W. Herzog, and M. Epstein. Evaluation of the finite element software ABAQUS for biomechanical modeling of biphasic tissues. J. Biomech. 31(2):165–169, 1998.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support from the Center for Injury Sciences and the Department of Biomedical Engineering at the University of Alabama at Birmingham.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan W. Eberhardt.

APPENDIX

APPENDIX

Implementation of Material Model for the Interpubic Disc

The material model (Type 77) was used to simulate the three-parameter Mooney-Rivlin model for the interpubic disc with a viscoelastic option. The physical meaning of the constants in the card can be found in LS-DYNA Keywords User's Manual (Version 970). \(G = 2(C_{10} + C_{01} ) = 0.5\hbox{\it MPa}\), \(G_i = \alpha _i G_{}\) and \(\beta _i = {1 \mathord{\left/ {\vphantom {1 {\tau _i }}} \right. \kern-\nulldelimiterspace} {\tau _i }}\). Card values input in the material model are provided in the Tables below:

Card 1

 

Variable

MID

RO (kg/m3)

PR

N

NV

G (MPa)

Value

3

1200

0.495

0

2

0.5

Card 2 for material constants of interpubic disc (male)

 

Variable

C10 (MPa)

C01 (MPa)

C11 (MPa)

Value

0.05

0.2

0.25

Card 3 for viscoelastic constants of two-term Prony series

 

Variable

G1 (MPa)

β1

G2 (MPa)

β2

Value

0.016

0.54

0.07

0.06

Implementation of Material Model for the Pubic Ligaments

The material model (Type 91) in LS-DYNA was used for the ligament model with a viscoelastic option. The material axis was assumed globally orthotropic (AOPT=2) and the transverse x-axis was considered for collagen fiber direction of the ligaments (normal to the midline plane of the interpubic disc). The spectral strengths for Prony series relaxation kernel were calculated as \(S_i = \alpha _i G_0\), where \(G_0 = 2(C_1 + C_2 ) = 2.88\,\hbox{MPa}\) and Ti = τi. The card values input in the FE model are provided in the Tables below.

Card 1

 

 

 

RO

C1

C2

C3

C4

C5

Variable

MID

(kg/m3)

(MPa)

(MPa)

(MPa)

(no unit)

(MPa)

Value

4

1200

1.44

0.0

0.19

35.5

155.0

Card 2

 

Variable

XK(MPa)

XLAM

FANG

XLAM0

Value

1440

1.055

0.0

0.0

Card 3

 

Variable

AOPT

AX

AY

AZ

BX

BY

BZ

Value

2

1.0

0.0

0.0

0.0

1.0

0.0

Card 4

 

Variable

LA1

LA2

LA3

Value

0.0

0.0

0.0

The following two cards were used for the viscoelastic option. (Si, Ti) are spectral strengths and characteristic times for Prony series relaxation kernel.

Card 5 (male)

 

Variable

S1 (MPa)

S2 (MPa)

Value

0.092

0.403

Card 6

 

Variable

T1

T2

Value

1.85

16.72

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Alonso, J.E., Kim, JE. et al. Three-Dimensional Finite Element Models of the Human Pubic Symphysis with Viscohyperelastic Soft Tissues. Ann Biomed Eng 34, 1452–1462 (2006). https://doi.org/10.1007/s10439-006-9145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9145-1

Keywords

Navigation