Skip to main content
Log in

Mitral Valve Function and Chordal Force Distribution Using a Flexible Annulus Model: An In Vitro Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Since variations in annular motion/shape and papillary muscle displacement have been observed in studies of dilated cardiomyopathy and ischemic mitral regurgitation, the objective of this study was to investigate the effects of annular motion/flexibility and papillary muscle displacement on chordal force and mitral valve function. Six human mitral valves were studied in a left heart simulator using a flexible annular model. Mitral flow, trans-mitral pressure and chordae tendineae tension were monitored online in normal and pathophysiologic papillary muscle positions. The flexible annulus model showed a significant increase in mitral regurgitation volume (p < 0.05) when compared to static annuli models. Furthermore, there was a significant increase of force on the basal chords compared to the force present with the static annuli models. Utilizing the flexible annulus model, papillary muscle displacement significantly increased the force on the anterior strut, posterior intermediate and commissural chords. (1) Papillary muscle displacement increases the tension on the intermediate chords inducing tenting of the leaflets and subsequent regurgitation. (2) The tension on the intermediate and marginal chords is relatively insensitive to annular motion, whereas tension on the basal chords is directly affected by annular motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boltwood, C. M., M. Wong, and P. M. Shah. Quantitative echocardiography of the mitral complex in dilated cardiomyopathy: The mechanism of functional mitral regurgitation. Circulation 68:498–508, 1983.

    CAS  PubMed  Google Scholar 

  2. Flachskampf, F. A., S. Chandra, A. Gaddipatti, R. A. Levine, A. E. Weyman, W. Amelig, P. Hanrath, and J. D. Thomas. Analysis of shape and motion of the mitral annulus in subjects with and without cardiomyopathy by echocardiographic 3-dimensional reconstruction. Am. Soc. Echocardiogr. 13:277–287, 2000.

    Article  CAS  Google Scholar 

  3. Glasson, J. R., M. Komeda, G. T. Daughters, A. F. Bolger, A. MacIsaac, S. N. Oesterle, N. B. Ingels, and D. C. Miller. Three-dimensional dynamics of the canine mitral annulus during ischemic mitral regurgitation. Ann. Thorac. Surg. 62:1059–1068, 1996.

    Article  CAS  PubMed  Google Scholar 

  4. Gorman, J. H. III, R. C. Gorman, B. M. Jackson, Y. Hiramatsu, N. Gikakis, S. T. Kelley, M. G. Sutton, T. Plappert, and L. H. Edmunds. Distortions of the mitral valve in acute ischemic mitral regurgitation. Ann. Thorac. Surg. 64:1026–1031, 1997.

    Article  PubMed  Google Scholar 

  5. Gorman, J. H. III, B. G. Krishanu, J. T. Streicher, R. C. Gorman, B. M. Jackson, M. B. Ratcliffe, D. K. Bogen, and L. H. Edmunds. Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J. Thorac. Cardiovasc. Surg. 112:712–726, 1996.

    PubMed  Google Scholar 

  6. Gorman, J. H. III, B. M. Jackson, R. C. Gorman, S. T. Kelly, N. Gikakis, and H. Edmunds. Papillary muscle discoordination rather than increased annular area facilitates mitral regurgitation after acute posterior myocardial infaction. Circulation 96(suppl II):124–127, 1997.

    Google Scholar 

  7. He, S., J. D. Lemmon, M. W. Weston, M. O. Jensen, R. A. Levine, and A. P. Yoganathan. Mitral valve compensation for annular dilation: In vitro study into the mechanisms of functional mitral regurgitation with an adjustable annulus model. J. Heart Valve Dis. 8:294–302, 1999.

    CAS  PubMed  Google Scholar 

  8. He, S., J. H. Jimenez, Z. He, and A. P. Yoganathan. Mitral leaflet geometrical perturbations with papillary muscle displacement and annular dilation: An in-vitro study of ischemic mitral regurgitation. J. Heart Valve Dis. 12(3):300–307, 2003.

    PubMed  Google Scholar 

  9. Jimenez, J. H., D. Soerensen, Z. He, S. He, and A. P. Yoganathan. Effects of a saddle shaped annulus on mitral valve function and papillary muscle position. Ann. Biomed. Eng. 31:1171–1181, 2003.

    Article  PubMed  Google Scholar 

  10. Kalmanson, D. The mitral valve a pluridisciplinary approach. Publishing Science Group, Inc. Chapter 1–5:3–45, 1976.

  11. Kaplan, S. R., G. Bashein, F. H. Sheehan, M. E. Legget, B. Munt, X. Ning Li, M. Sirvarajan, E. L. Bolson, M. Zeppa, and R. W. Martin. Three-dimensional echocardiographic assessment of annular shape changes in the normal and regurgitant mitral valve. Am. Heart J. 139:243–250, 2000.

    Article  Google Scholar 

  12. Kaul, S., J. D. Pearlman, D. A. Touchstone, and L. Esquival. Prevalence and mechanism of mitral regurgitation in absence of intrinsic abnormalities of the mitral leaflets. Am. Heart J. 118:963–972, 1989.

    Article  CAS  PubMed  Google Scholar 

  13. Levine, R. A., M. O. Triulizi, P. Harrigan, and A. E. Weyman . The relationship of the mitral annular shape to the diagnosis of mitral valve prolapse. Circulation 75(IV):756–767, 1987.

    CAS  PubMed  Google Scholar 

  14. Liao, J., and I. Vesely. A structural basis for the size-related mechanical properties of mitral valve chordae tendineae. J. Biomech. 36(8):1125–1133, 2003.

    Article  PubMed  Google Scholar 

  15. Lomholt, M., S. L. Nielsen, S. B. Hansen, N. T. Andersen, and J. M. Hasenkam. Differential tension between secondary and primary mitral chordae in acute in-vivo porcine model. J. Heart Valve Dis. 11:337–345, 2002.

    PubMed  Google Scholar 

  16. Mahbubul, A. The atrioventricular plane displacement as a means of evaluating left ventricular systolic function in acute myocardial infarction. Clin. Cardiol. 14:588–594, 1991.

    PubMed  Google Scholar 

  17. Masako, M., O. Takashi, M. Yuichiro, Y. Hirotsugu, T. Tomotsugu, W. Tetsuzo, and I. Susumu. Early systolic mitral annular motion velocities response to dobutamine infusion predict myocardial viability in patients with previous myocardial infarction. Am. Heart J. 143:552–558, 2002.

    Article  PubMed  Google Scholar 

  18. Messas, E., J. L. Guerrero, M. D. Handschumacher, C. Conrad, C. Chow, S. Sullivan, A. P. Yoganathan, and R. A. Levine. Chordal cutting, a new therapeutic approach for ischemic mitral regurgitation. Circulation 104:1958–1963, 2001.

    CAS  PubMed  Google Scholar 

  19. Mikami, T., M. Hashimoto, T. Kudo, T. Sugawara, S. Sakamoto, and H. Yasuda. Mitral valve and its ring in hypertrophic cardiomyopathy, a mechanism creating surplus mitral leaflet involved in systolic anterior motion. Jpn. Circ. J. 52:597–602, 1998.

    Google Scholar 

  20. Morten, O. J., A. Fontaine, and A. P. Yoganathan. Improved in vitro quantification of the force exerted by the papillary muscle on the left ventricular wall three dimensional force vector measurement system ABME 10:111–124, 2000.

    Google Scholar 

  21. S. L. Nielsen, H. Hygaard, A. A. Fontaine, J. M. Hasenkam, S. He, N. T. Andersen, and A. P. Yoganathan. Chordal force distribution determines systolic mitral leaflet configuration and severity of functional mitral regurgitation. J. Am. Coll. Cardiol. 33:843–853, 1999.

    Article  CAS  PubMed  Google Scholar 

  22. Pai, R. G., M. Tanimoto, W. Jintapakorn, J. Azevedo, N. G. Pandian, and P. M. Shah. Volume-rendered three-dimensional dynamic anatomy of the mitral annulus using transesophageal echocardiographic technique. J. Heart Valve Dis. 4:625–627, 1995.

    Google Scholar 

  23. Sedransk, K. L., J. G. Allen, and I. Vesely. Failure mechanics of mitral valve chordae tendineae. J. Heart Valve Dis. 11:644–650, 2002.

    PubMed  Google Scholar 

  24. Toumanidis, S. T., D. A. Sideris, C. M. Papamichael, and S. D. Moulopoulos. The role of mitral annulus motion in left ventricular function. Acta Cardiol. 4:331–348, 1992.

    Google Scholar 

  25. Tibayan, F. A., D. T. Lai, T. A. Timek, P. Dagum, D. Liang, M. K. Zasio, G. T. Daughters, D. C. Miller, and N. B. Ingels. Alterations in left ventricular curvature and principal strains in dilated cardiomyopathy with functional mitral regurgitation. J. Heart Valve Dis. 12:292–299, 2003.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit P. Yoganathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jimenez, J.H., Soerensen, D.D., He, Z. et al. Mitral Valve Function and Chordal Force Distribution Using a Flexible Annulus Model: An In Vitro Study. Ann Biomed Eng 33, 557–566 (2005). https://doi.org/10.1007/s10439-005-1512-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-1512-9

Keywords

Navigation