Skip to main content
Log in

Isolation and characterization of thermostable DNA polymerase of the hyperthermophilic archaeum Thermococcus litoralis Sh1AM

Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Overall, 30 strains of hyperthermophilic archaea, representing seven species of the genera Thermococcus, Desulfurococcus, Thermoproteus, and Acidilobus, were tested for the presence of thermostable DNA polymerases. Thermostabilities of the polymerases varied distinctly among the strains within one species. Polymerases of five strains retained 60–100% activity upon incubation of the preparations at 95°C for 120 min. A new DNA polymerase was isolated from the strain Thermococcus litoralis Sh1AM, possessing the enzyme with the most promising properties, and characterized. Molecular weight of the enzyme is 90–100% kDa. The purified DNA polymerase preserved 50% of the initial activity upon incubation at 95°C for 120 min. The polymerase isolated displayed an associated 3’–5’ exonuclease activity. The error rate when extending a DNA strand was at least twofold lower compared with Taq polymerase. The main physicochemical and enzymatic properties of the new polymerase are similar to the known DNA polymerases of family B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  1. D.K. Braithwaite J. Ito (1993) Nucleic Acid Res. 21 IssueID4 787–802

    Google Scholar 

  2. A. Kornberg D. Baker (1992) DNA Replication Freeman and Comp New York

    Google Scholar 

  3. D.R. Edgell W.F. Doolittle (1997) Cell 89 IssueID7 995–998

    Google Scholar 

  4. F. Perler S. Kumar H. Kong (1996) Adv. Protein Chem. 48 IssueID48 377–435

    Google Scholar 

  5. T. Uemori Y. Sato I. Kato H. Doi Y. Ishino (1997) Genes Cells 2 IssueID8 499–512

    Google Scholar 

  6. I.K.O. Cann Y. Ishino (1999) Genetics 152 IssueID4 1249–1267

    Google Scholar 

  7. I.K. Cann S. Ishino N. Nomura Y. Sako Y. Ishino (1999) J. Bacteriol. 181 IssueID19 5984–5992

    Google Scholar 

  8. T. Uemori Y. Ishino H. Doi I. Kato (1995) J. Bacteriol. 177 IssueID8 2164–2177

    Google Scholar 

  9. D.R. Edgell S.-B. Malik W.F. Doolittle (1999) J. Bacteriol. 179 IssueID8 2632–2640

    Google Scholar 

  10. A. Chen D.B. Edgar J.M. Trela (1976) J. Bacteriol. 127 IssueID3 1550–1557

    Google Scholar 

  11. A.S. Kaledin A.G. Slyusarenko S.I. Gorodetskii (1980) Biokhimiya 45 IssueID4 644–651

    Google Scholar 

  12. R.K. Saiki D.H. Gelfand S. Stoffel S.J. Scharf R. Higuchi G.T. Horn K.B. Mullis H.A. Erlich (1988) Science 239 IssueID4839 487–491 Occurrence Handle1:CAS:528:DyaL1cXht1Ogt7k%3D Occurrence Handle2448875

    CAS  PubMed  Google Scholar 

  13. A.S. Kostyukova G.M. Gongadze Y.Y. Polosina E.A. Bonch-Osmolovskaya M.L. Miroshnichenko N.A. Chernyh M.V. Obraztsova V.A. Svetlichny P. Messner U.B. Sleytr S. L’Haridon C. Jeanthon D. Preur (1999) Extremophiles 3 IssueID4 239–245

    Google Scholar 

  14. A.A. Perevalova A.V. Lebedinskii E.A. Bonch-Osmolovskaya N.A. Chernykh (2003) Mikrobiologiya 72 IssueID3 383–389

    Google Scholar 

  15. E.A. Bonch-Osmolovskaya M.L. Miroshnichenko N.A. Kostrrikina N.A. Chernych G.A. Zavarzin (1990) Arch. Microbiol. 154 IssueID6 556–559

    Google Scholar 

  16. M.I. Prokofeva M.L. Miroshnichenko N.A. Kostrikina N.A. Chernyh B.B. Kuznetsov T.P. Tourova E.A. Bonch-Osmolovskaya (2000) Int. J. Syst. Evol. Microbiol. 50 IssueID6 2001–2008

    Google Scholar 

  17. E.A. Bonch-Osmolovskaya A.I. Slesarev M.L. Miroshnichenko T.P. Svetlichnaya V.A. Alekseev (1988) Mikrobiologiya 57 IssueID1 94–101

    Google Scholar 

  18. A.V. Shchennikova A.S. Kraev I.N. Pozmogova K.G. Skryabin (1996) Mol. Biol. 30 IssueID6 1268–1273

    Google Scholar 

  19. F.M. Ausubel R. Brent R.E. Kingston D.D. Moore G. Seidman J.A. Smith K. Struhl (Eds) (1997) Current Protocols in Molecular Biology John Wiley and Sons New York

    Google Scholar 

  20. S. Hjorleifsdottir W. Ritterbusch S.K. Petursdottir J.K. Kristjansson (1997) Biotechnol. Lett. 19 IssueID1 147–150

    Google Scholar 

  21. U.K. Laemmli (1970) Nature 227 IssueID259 680–685 Occurrence Handle5432063

    PubMed  Google Scholar 

  22. Angerer, V., Ebenbishler, S., Agheguian, G., Laue, F., Ankenbauer, W., Svetlishny, V., and Bonch-Osmolovskaya, E., European Patent, 1998, no. EP083570.

  23. K. Bebenek T.A. Kunkel (1995) Methods Enzymol. 262 217–232

    Google Scholar 

  24. J. Cline J.C. Braman H.H. Hogrefe (1996) Nucleic Acid Res. 24 IssueID18 3546–3451

    Google Scholar 

  25. T Maniatis E.F Fritsch J. Sambrook (1984) NoChapterTitle A.A. Baev K.G. Skryabin (Eds) Molekulyarnoe klonirovanie: metody geneticheskoi inzhenerii Mir Moscow

    Google Scholar 

  26. H. Hashimoto M. Nishioka S. Fujiwara M. Takagi T. Imanaka T. Inoue Y. Kai (2001) J. Mol. Biol. 306 IssueID3 469–477

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 1, 2005, pp. 40–47.

Original Russian Text Copyright © 2005 by Slobodkina, Chernykh, Lopatin, Il’ina, Bannikova, Ankenbauer, El’darov, Varlamov, Bonch-Osmolovskaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slobodkina, G.B., Chernykh, N.A., Lopatin, S.A. et al. Isolation and characterization of thermostable DNA polymerase of the hyperthermophilic archaeum Thermococcus litoralis Sh1AM. Appl Biochem Microbiol 41, 34–41 (2005). https://doi.org/10.1007/s10438-005-0007-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10438-005-0007-7

Keywords

Navigation