Skip to main content
Log in

Influence of bone teeth on strength and toughness of sutured bone plate of turtle shell

骨齿对龟甲骨质层中骨缝结构强度和韧性的影响

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The bone plate of turtle shell carapace is formed by several individual ribs through the suture structure of bone teeth. Based on the tensile and bending experiments as well as finite element analysis, the influence of bone teeth at the suture on the strength and toughness of the bone plate of turtle shell carapace is studied in this paper. Precisely morphological characterization shows that the bone teeth at the suture of bone plate are mainly formed by triangle and quadrilateral grooved cones instead of the perfect cone that is often assumed. Similar to the bone plate, 3D printed samples with suture structures formed by triangle or quadrilateral grooved conical teeth are then prepared. Based on the natural and printed samples, the tensile tests combined with the finite element calculations find that the peak-to-valley ratio of bone teeth is a key factor that can explain the strength and toughness of the sutured bone plate varying with the shape of bone teeth, instead of the supposedly lateral surface area or the project area of bone teeth. For bone teeth with a given shape, the larger the peak-to-valley ratio, the larger the strength and toughness of the bone plate are. Comparison of the bending experimental result of 3D printed suture structures with grooved conical bone teeth and that of the natural sutured bone plate of turtle shell carapace further verifies the finding that the peak-to-valley ratio is a decisive parameter on the strength and toughness of suture structure of bone teeth. The results of this paper should be of significance to the biomimetic design of suture structures with high strength and toughness.

摘要

龟壳背甲的骨质板由多根独立的肋骨组成, 内部的骨缝结构将独立的肋骨组成整体骨质板. 基于单轴拉伸、弯曲实验和有限元 分析, 本文研究了骨缝结构中的骨齿对龟甲骨质板整体强度和韧性的影响. 微观形貌观测实验实验表明, 龟甲骨质板骨缝结构中的骨 齿带有三棱锥和四棱锥的凹槽构型, 与已有研究中假设的完美圆锥型结构有着显著差异. 通过3D打印技术制备了带有三棱锥和四棱锥 凹槽构型的骨缝结构仿生试件并进行了力学测试. 结果表明, 骨齿的齿峰-齿谷比值是影响骨缝结构整体强韧性的关键因素, 而非假设 的骨齿侧表面积和投影面积. 对于给定形状的骨齿结构而言, 齿峰-齿谷比值越大则骨质板的强度和韧性则越大. 对龟壳背甲带骨缝的 骨质板和相应的仿生试件进行了三点弯曲实验测试, 结果同样表明骨齿的齿峰-齿谷比值是整体强韧性能的决定性参数. 本文的结果对 于缝结构材料的强韧化仿生设计具有指导意义.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Cray Jr, M. P. Mooney, and M. I. Siegel, Timing of ectocranial suture activity in Pan troglodytes as related to cranial volume and dental eruption, Anat. Rec. 293, 1289 (2010).

    Article  Google Scholar 

  2. N. Lee, L. N. Williams, S. Mun, H. Rhee, R. Prabhu, K. R. Bhattarai, and M. F. Horstemeyer, Stress wave mitigation at suture interfaces, Biomed. Phys. Eng. Express 3, 035025 (2017).

    Article  Google Scholar 

  3. J. Rivera, M. S. Hosseini, D. Restrepo, S. Murata, D. Vasile, D. Y. Parkinson, H. S. Barnard, A. Arakaki, P. Zavattieri, and D. Kisailus, Toughening mechanisms of the elytra of the diabolical ironclad beetle, Nature 586, 543 (2020).

    Article  Google Scholar 

  4. N. Lee, M. F. Horstemeyer, H. Rhee, B. Nabors, J. Liao, and L. N. Williams, Hierarchical multiscale structure-property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak, J. R. Soc. Interface 11, 20140274 (2014).

    Article  Google Scholar 

  5. S. I. Genkal, and G. I. Popovskaya, Centric diatom algae of the Selenga River and its delta branches, Inland Water Biol. 1, 120 (2008).

    Article  Google Scholar 

  6. W. Yang, S. E. Naleway, M. M. Porter, M. A. Meyers, and J. McKittrick, The armored carapace of the boxfish, Acta Biomater. 23, 1 (2015).

    Article  Google Scholar 

  7. B. Achrai, and H. D. Wagner, Micro-structure and mechanical properties of the turtle carapace as a biological composite shield, Acta Biomater. 9, 5890 (2013).

    Article  Google Scholar 

  8. S. Krauss, E. Monsonego-Ornan, E. Zelzer, P. Fratzl, and R. Shahar, Mechanical function of a complex three-dimensional suture joining the bony elements in the shell of the red-eared slider turtle, Adv. Mater. 21, 407 (2009).

    Article  Google Scholar 

  9. P. M. Magwene, and J. J. Socha, Biomechanics of turtle shells: How whole shells fail in compression, J. Exp. Zool. 319, 86 (2013).

    Article  Google Scholar 

  10. B. Achrai, B. Bar-On, and H. D. Wagner, Bending mechanics of the red-eared slider turtle carapace, J. Mech. Behav. Biomed. Mater. 30, 223 (2014).

    Article  Google Scholar 

  11. M. Chen, N. Hu, C. Zhou, X. Lin, H. Xie, and Q. He, The hierarchical structure and mechanical performance of a natural nanocomposite material: The turtle shell, Colloids Surf. A-Physicochem. Eng. Aspects 520, 97 (2017).

    Article  Google Scholar 

  12. Y. Shelef, and B. Bar-On, Surface protection in bio-shields via a functional soft skin layer: Lessons from the turtle shell, J. Mech. Behav. Biomed. Mater. 73, 68 (2017).

    Article  Google Scholar 

  13. R. Damiens, H. Rhee, Y. Hwang, S. J. Park, Y. Hammi, H. Lim, and M. F. Horstemeyer, Compressive behavior of a turtle’s shell: Experiment, modeling, and simulation, J. Mech. Behav. Biomed. Mater. 6, 106 (2012).

    Article  Google Scholar 

  14. B. S. Han, Y. J. Xu, E. Y. Guo, T. Jing, H. L. Hou, and L. S. Luo, Microstructure and mechanical properties of tortoise carapace structure bio-inspired hybrid composite, Acta Metall. Sin. (Engl. Lett.) 31, 945 (2018).

    Article  Google Scholar 

  15. B. Achrai, and H. D. Wagner, The turtle carapace as an optimized multi-scale biological composite armor—A review, J. Mech. Behav. Biomed. Mater. 73, 50 (2017).

    Article  Google Scholar 

  16. T. Hirasawa, H. Nagashima, and S. Kuratani, The endoskeletal origin of the turtle carapace, Nat. Commun. 4, 2107 (2019).

    Article  Google Scholar 

  17. I. H. Chen, W. Yang, and M. A. Meyers, Leatherback sea turtle shell: A tough and flexible biological design, Acta Biomater. 28, 2 (2015).

    Article  Google Scholar 

  18. B. Achrai, B. Bar-On, and H. D. Wagner, Biological armors under impact—effect of keratin coating, and synthetic bio-inspired analogues, Bioinspir. Biomim. 10, 016009 (2015).

    Article  Google Scholar 

  19. H. Rhee, M. F. Horstemeyer, Y. Hwang, H. Lim, H. El Kadiri, and W. Trim, A study on the structure and mechanical behavior of the Terrapene carolina carapace: A pathway to design bio-inspired synthetic composites, Mater. Sci. Eng.-C 29, 2333 (2009).

    Article  Google Scholar 

  20. B. An, and H. D. Wagner, Protection mechanisms of the carapace of a box turtle, J. Mech. Behav. Biomed. Mater. 71, 54 (2017).

    Article  Google Scholar 

  21. Z. Liu, Z. Zhang, and R. O. Ritchie, Interfacial toughening effect of suture structures, Acta Biomater. 102, 75 (2020).

    Article  Google Scholar 

  22. Y. Li, C. Ortiz, and M. C. Boyce, Stiffness and strength of suture joints in nature, Phys. Rev. E 84, 062904 (2011).

    Article  Google Scholar 

  23. M. S. Hosseini, F. A. Cordisco, and P. D. Zavattieri, Analysis of bioinspired non-interlocking geometrically patterned interfaces under predominant mode I loading, J. Mech. Behav. Biomed. Mater. 96, 244 (2019).

    Article  Google Scholar 

  24. B. Alheit, S. Bargmann, and B. D. Reddy, Computationally modelling the mechanical behaviour of turtle shell sutures—A natural interlocking structure, J. Mech. Behav. Biomed. Mater. 110, 103973 (2020).

    Article  Google Scholar 

  25. B. Alheit, S. Bargmann, and B. D. Reddy, How suture networks improve the protective function of natural structures: A multiscale investigation, Acta Biomater. 145, 283 (2022).

    Article  Google Scholar 

  26. E. Lin, Y. Li, C. Ortiz, and M. C. Boyce, 3D printed, bio-inspired prototypes and analytical models for structured suture interfaces with geometrically-tuned deformation and failure behavior, J. Mech. Phys. Solids 73, 166 (2014).

    Article  Google Scholar 

  27. E. Lin, Y. Li, J. C. Weaver, C. Ortiz, and M. C. Boyce, Tunability and enhancement of mechanical behavior with additively manufactured bio-inspired hierarchical suture interfaces, J. Mater. Res. 29, 1867 (2014).

    Article  Google Scholar 

  28. I. A. Malik, M. Mirkhalaf, and F. Barthelat, Bio-inspired “jigsaw”-like interlocking sutures: Modeling, optimization, 3D printing and testing, J. Mech. Phys. Solids 102, 224 (2017).

    Article  MathSciNet  Google Scholar 

  29. M. M. Porter, N. Ravikumar, F. Barthelat, and R. Martini, 3D-printing and mechanics of bio-inspired articulated and multi-material structures, J. Mech. Behav. Biomed. Mater. 73, 114 (2017).

    Article  Google Scholar 

  30. Y. Cao, W. Wang, J. Wang, and C. Zhang, Experimental and numerical study on tensile failure behavior of bionic suture joints, J. Mech. Behav. Biomed. Mater. 92, 40 (2019).

    Article  Google Scholar 

  31. X. Fan, S. Liu, B. Wang, Y. Wang, S. Wang, and X. Gong, An experimental and numerical study of sutural composites with shear stiffening gel core, J. Mater. Sci. 57, 1328 (2022).

    Article  Google Scholar 

  32. S. Wickramasinghe, T. Do, and P. Tran, Flexural behavior of 3D printed bio-inspired interlocking suture structures, Mater. Sci. Add. Manuf. 1, 9 (2022).

    Article  Google Scholar 

  33. S. Wickramasinghe, C. Peng, R. Ladani, and P. Tran, Analysing fracture properties of bio-inspired 3D printed suture structures, Thin-Walled Struct. 176, 109317 (2022).

    Article  Google Scholar 

  34. X. Zhang, Z. Cai, W. Li, and M. Zhu, Understanding hydration effects on mechanical and impacting properties of turtle shell, J. Mech. Behav. Biomed. Mater. 78, 116 (2018).

    Article  Google Scholar 

  35. F. Liu, T. Li, Z. Jia, and L. Wang, Combination of stiffness, strength, and toughness in 3D printed interlocking nacre-like composites, Extreme Mech. Lett. 35, 100621 (2020).

    Article  Google Scholar 

  36. B. Ji, and H. Gao, Mechanical properties of nanostructure of biological materials, J. Mech. Phys. Solids 52, 1963 (2004).

    Article  MATH  Google Scholar 

  37. Y. Shao, H. P. Zhao, X. Q. Feng, and H. Gao, Discontinuous crack-bridging model for fracture toughness analysis of nacre, J. Mech. Phys. Solids 60, 1400 (2012).

    Article  MathSciNet  Google Scholar 

  38. Z. Q. Zhang, B. Liu, Y. Huang, K. C. Hwang, and H. Gao, Mechanical properties of unidirectional nanocomposites with non-uniformly or randomly staggered platelet distribution, J. Mech. Phys. Solids 58, 1646 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  39. B. H. Sun, W. Dang, X. T. Liu, and X. L. Guo, Bending response and energy dissipation of interlayer slidable friction booklike-plates, Acta Mech. Sin. 39, 222449 (2023).

    Article  MathSciNet  Google Scholar 

  40. Z. Huang, K. Fu, Y. Li, and C. Yan, Development of impact resistant 3D printed multi-layer carbon fibre reinforced composites by structural design, Acta Mech. Sin. 38, 121428 (2022).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12032004, 12272043, 12293000, and 12293002).

Author information

Authors and Affiliations

Authors

Contributions

Shaohua Chen designed the research. Peiran Li wrote the first draft of the manuscript. Peiran Li, Zheyuan Yu, Bo Zhang, and Zhilong Peng set up the experiment set-up and processed the experiment data and finite element simulations. Yin Yao helped organize the manuscript. Yin Yao and Shaohua Chen revised and edited the final version.

Corresponding authors

Correspondence to Yin Yao  (姚寅) or Shaohua Chen  (陈少华).

Additional information

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Yu, Z., Peng, Z. et al. Influence of bone teeth on strength and toughness of sutured bone plate of turtle shell. Acta Mech. Sin. 39, 623097 (2023). https://doi.org/10.1007/s10409-023-23097-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23097-x

Navigation