Skip to main content
Log in

A synchronous thermal-mechanical in-situ device for dynamic fracture initiation

基于在位力热同步实验装置的动态断裂起裂机理研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

As a typical failure behavior, the dynamic fracture is critical for material safety assessment and design, whose rapid evolution in the crack tip over a short time causes tremendous challenges in characterizing the evolution of the local temperature field. Although researchers have pointed out that temperature significantly affects fracture toughness, the temperature rise and the role of thermal softening in the crack tip region during the dynamic crack initiation need to be clarified. This work aims to evaluate the temperature rise effect at crack initiation in TC4 (Ti-6Al-4V) alloy under impact loading. We developed a thermal-mechanical coupled in-situ measurement system to obtain synchronized COD (crack-tip opening displacement) and temperature field evolution for the dynamic mode I fracture with high temporal and spatial resolution. The evolution of synchronous COD and temperature field during crack initiation under dynamic loading was investigated. The corresponding simulation was conducted to analyze the thermal softening effect at dynamic crack initiation. In TC4 alloy, the maximum temperature detected at crack initiation is about 130 °C, and the thermal effect on the material property is minor. The results of this work fulfill data support for investigating the coupled thermal-mechanical fracture behavior of metal.

摘要

作为一种典型的失效行为, 动态断裂对于材料安全评估和设计至关重要, 而动态断裂的瞬时性给实验表征裂纹尖端局部温度场演化带来了巨大挑战. 研究人员指出温度对断裂韧性有显著影响, 但在动态断裂起裂过程中, 温度升高和裂纹尖端区域热软化效应的作用仍需阐明. 本工作旨在评估温升效应对TC4 (Ti-6Al-4V)合金受冲击动态断裂起裂的影响. 我们开发了一种力/热耦合在位测试装置, 获得了高时间/空间分辨率的动态I型断裂的同步COD(裂纹尖端张开位移)和温度场演化过程, 并进行了相应的模拟, 分析了动态断裂起裂时的热软化效应的作用. 对于TC4合金, 起裂时刻测得的最高温度约为130, 热效应对材料性能的影响较小. 本工作的结果为研究金属的力/热耦合断裂行为提供了数据支持.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. T. Zehnder, and A. J. Rosakis, Experimental measurement of the temperature rise generated during dynamic crack growth in metals, Appl. Mech. Rev. 43, S260 (1990).

    Article  Google Scholar 

  2. J. A. Kallivayalil, and A. T. Zehnder, Measurement of the temperature field induced by dynamic crack growth in Beta-C titanium, Int. J. Fract. 66, 99 (1994).

    Article  Google Scholar 

  3. P. R. Guduru, A. T. Zehnder, A. J. Rosakis, and G. Ravichandran, Dynamic full field measurements of crack tip temperatures, Eng. Fract. Mech. 68, 1535 (2001).

    Article  Google Scholar 

  4. X. Lv, S. Chen, Q. Wang, H. Jiang, and L. Rong, Temperature dependence of fracture behavior and mechanical properties of AISI 316 austenitic stainless steel, Metals 12, 1421 (2022).

    Article  Google Scholar 

  5. C. Chen, R. Yang, C. Ding, Y. Zhao, H. Lin, and Y. Wang, Design and application of a comprehensive experimental system for real imaging-virtual imaging of dynamic caustics, Appl. Opt. 60, 3549 (2021).

    Article  Google Scholar 

  6. X. F. Yao, and W. Xu, Recent application of caustics on experimental dynamic fracture studies, Fatigue Fract. Eng. Mater. Struct. 34, 448 (2011).

    Article  Google Scholar 

  7. A. J. Rosakis, A. T. Zehnder, and R. Narasimhan, Caustics by reflection and their application to elastic-plastic and dynamic fracture mechanics, Opt. Eng. 27, 596 (1988).

    Article  Google Scholar 

  8. W. Liu, X. Ma, L. Li, and Y. Yuan, Fracture assessments of blunt V-notches using the coherent gradient sensing (CGS) method, Theor. Appl. Fract. Mech. 113, 102974 (2021).

    Article  Google Scholar 

  9. H. V. Tippur, Coherent gradient sensing (CGS) method for fracture mechanics: A review, Fatigue Fract. Eng. Mater. Struct. 33, 832 (2010).

    Article  Google Scholar 

  10. W. Xu, X. F. Yao, H. Y. Yeh, and G. C. Jin, Fracture investigation of PMMA specimen using coherent gradient sensing (CGS) technology, Polym. Testing 24, 900 (2005).

    Article  Google Scholar 

  11. A. J. Rosakis, Application of coherent gradient sensing (CGS) to the investigation of dynamic fracture problems, Optics Lasers Eng. 19, 3 (1993).

    Article  Google Scholar 

  12. C. F. Shih, Relationships between the J-integral and the crack opening displacement for stationary and extending cracks, J. Mech. Phys. Solids 29, 305 (1981).

    Article  MATH  Google Scholar 

  13. P. R. Guduru, R. P. Singh, G. Ravichandran, and A. J. Rosakis, Dynamic crack initiation in ductile steels, J. Mech. Phys. Solids 46, 1997 (1998).

    Article  Google Scholar 

  14. D. D. Anderson, and A. J. Rosakis, Dynamic fracture properties of titanium alloys, Exp. Mech. 46, 399 (2006).

    Article  Google Scholar 

  15. W. Wciślik, and R. Pała, Some microstructural aspects of ductile fracture of metals, Materials 14, 4321 (2021).

    Article  Google Scholar 

  16. R. Li, Z. Zheng, M. Zhan, H. Zhang, X. Cui, and Y. Lei, Fracture prediction for metal sheet deformation under different stress states with uncoupled ductile fracture criteria, J. Manuf. Process. 73, 531 (2022).

    Article  Google Scholar 

  17. G. Zhao, X. Yu, Q. Zeng, S. Zhu, W. Qi, and H. Chen, Evolution of local deformation field inside adiabatic shear band of 1018 steel studied using digital image correlation with micro-speckles, Extreme Mech. Lett. 54, 101769 (2022).

    Article  Google Scholar 

  18. P. Chakraborty, and V. Tiwari, Dynamic fracture behaviour of AA7475-T7351 alloy at different strain rates and temperatures, Eng. Fract. Mech. 279, 109065 (2023).

    Article  Google Scholar 

  19. J. W. Dally, and R. J. Sanford, Strain-gage methods for measuring the opening-mode stress-intensity factor,K I, Exp. Mech. 27, 381 (1987).

    Article  Google Scholar 

  20. A. T. Zehnder, P. R. Guduru, A. J. Rosakis, and G. Ravichandran, Million frames per second infrared imaging system, Rev. Sci. Instrum. 71, 3762 (2000).

    Article  Google Scholar 

  21. Y. Rabin, and D. Rittel, A model for the time response of solid-embedded thermocouples, Exp. Mech. 39, 132 (1999).

    Article  Google Scholar 

  22. G. L. Moss, and R. B. Pond, Inhomogeneous thermal changes in copper during plastic elongation, Metall. Trans. A 6, 1223 (1975).

    Article  Google Scholar 

  23. J. Duffy, Temperature measurements during the formation of shear bands in a structural steel, Stud. Appl. Mech. 6, 75 (1984).

    Article  Google Scholar 

  24. V. Tvergaard, and A. Needleman, Analysis of the cup-cone fracture in a round tensile bar, Acta Metall. 32, 157 (1984).

    Article  Google Scholar 

  25. A. Needleman, and V. Tvergaard, An analysis of ductile rupture in notched bars, J. Mech. Phys. Solids 32, 461 (1984).

    Article  Google Scholar 

  26. A. Srivastava, L. Ponson, S. Osovski, E. Bouchaud, V. Tvergaard, and A. Needleman, Effect of inclusion density on ductile fracture toughness and roughness, J. Mech. Phys. Solids 63, 62 (2014).

    Article  MathSciNet  Google Scholar 

  27. D. Rittel, Thermomechanical aspects of dynamic crack initiation, Int. J. Fract. 99, 201 (1999).

    Article  Google Scholar 

  28. N. Ranc, L. Taravella, V. Pina, and P. Herve, Temperature field measurement in titanium alloy during high strain rate loading—Adiabatic shear bands phenomenon, Mech. Mater. 40, 255 (2008).

    Article  Google Scholar 

  29. R. Pawelko, V. Pina, and P. Hervé, Development of a dual infrared and visible near-infrared measurement system for the observation of adiabatic shear bands, Rev. Sci. Instrum. 90, 124902 (2019).

    Article  Google Scholar 

  30. S. B. Campana, Passive Electro-Optical Systems, The Infrared And Electro-Optical Systems Handbook (SPIE Optical Engineering Press, Bellingham, 1993).

    Book  Google Scholar 

  31. Y. Guo, Q. Ruan, S. Zhu, Q. Wei, H. Chen, J. Lu, B. Hu, X. Wu, Y. Li, and D. Fang, Temperature rise associated with adiabatic shear band: Causality clarified, Phys. Rev. Lett. 122, 015503 (2019).

    Article  Google Scholar 

  32. G. R. Johnson, and W. H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech. 21, 31 (1985).

    Article  Google Scholar 

  33. D. Leseur, Experimental Investigations of Material Models for Ti-6Al-4V and 2024-T3, Technical Report UCRL-ID-134691 (Lawrence Livermore National Lab., Livermore, 1999).

    Book  Google Scholar 

  34. A. Venkert, P. R. Guduru, and G. Ravichandran, An Investigation of Dynamic Failure in 2.3Ni-1.3Cr-0.17C Steel, Metall Mat Trans A 31, 1147 (2000).

    Article  Google Scholar 

  35. W. S. Lee, and C. F. Lin, Plastic deformation and fracture behaviour of Ti-6Al-4V alloy loaded with high strain rate under various temperatures, Mater. Sci. Eng.-A 241, 48 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11922202, 12002050, and 12102044), the National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact (Grant No. 6142902200401), Beijing Institute of Technology Research Fund Program for Young Scholars and the Fundamental Research Funds for the Central Universities (Grant No. 2022JCCXLJ01).

Author information

Authors and Affiliations

Authors

Contributions

Wei Liu: Conceptualization, Methodology and Supervision. Longkang Li: Investigation, Formal analysis, Writing–original draft and Writing–review & editing. Heng Yang: Supervision, Validation, Writing–original draft and Writing–review & editing. Manxi Chen: Validation and Writing–review & editing. Kai Yi: Writing–review & editing. Wei Qi: Investigation and Methodology. Shengxin Zhu: Conceptualization and Supervision. Qinglei Zeng: Conceptualization, Software and Supervision. Hao-Sen Chen: Conceptualization, Funding acquisition, Project administration, Resources and Supervision.

Corresponding authors

Correspondence to Heng Yang  (杨恒) or Hao-Sen Chen  (陈浩森).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Li, L., Yang, H. et al. A synchronous thermal-mechanical in-situ device for dynamic fracture initiation. Acta Mech. Sin. 39, 122492 (2023). https://doi.org/10.1007/s10409-023-22492-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-22492-x

Keywords

Navigation