Skip to main content
Log in

Thirty years of developments in contact modelling of non-spherical particles in DEM: a selective review

非球形颗粒离散元接触模型和方法三十年发展概述

  • Review
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The discrete element method has advanced significantly since it originated in 1979. This paper aims to provide a selective overview of some major developments on contact modelling methodologies for non-spherical particles in DEM over the last three decades. More attention is specifically paid towards developments in the early years. This review mainly focuses on the geometric aspects of contact modelling methods without touching upon material related physical issues. Various shape representation schemes for non-spherical particles are first presented using a classification system, followed by the critical review of contact modelling approaches for almost all contact types of non-spherical shapes. In addition to outlining key ideas, concepts and novel computational procedures that are proposed in these methodologies in a systematic and logically constructed manner, their evolutions and inter-relations in particular are also discussed in detail. Moreover, possible problems and unresolved issues for each method reviewed are highlighted, and possible solutions are pointed out where applicable.

摘要

离散元方法(DEM)自1979年提出以来, 在过去四十年中取得了显著的发展. 本文旨在选择性地概述离散元方法中非球形颗粒 接触模型和计算方法三十年来的主要进展, 并更多地关注早期的发展. 本综述主要关注接触模型的几何方面, 不涉及与材料相关的物 理问题. 首先分类描述了非球形颗粒几何形状的各种表示方案, 然后对几乎所有非球形颗粒接触模型和方法进行了系统性地梳理和讨 论, 除概述这些方法和模型的关键思想、主要概念以及原创性的计算方法外, 还详细讨论了它们的演变和相互关系. 最后还简要评述 了每种方法可能存在的问题和未解决的问题, 并指出可能的解决方案.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Cundall, A computer model for simulating progressive, large-scale movements in blocky rock systems, Proc. Int. Symp. Rock Fract. 11 (1971).

  2. P. A. Cundall, A computer model for rock-mass behaviour using interactive graphics for the input and output of geometric data, Report (National Technical Information Services, 1974).

  3. O. D. L. Strack, and P. A. Cundall, The distinct element method as a tool for research in granular media, Report (University of Minnesota, 1978).

  4. P. A. Cundall, BALL-A program to model granular media using the distinct element method, Technical Note (Advanced Technology Group, Dames & Moore, London, 1978).

    Google Scholar 

  5. P. A. Cundall, and O. D. L. Strack, A discrete numerical model for granular assemblies, Geotechnique 29, 47 (1979).

    Article  Google Scholar 

  6. A. Munjiza, D. R. J. Owen, and N. Bicanic, A combined finite-discrete element method in transient dynamics of fracturing solids, Eng. Comput. 12, 145 (1995).

    Article  MATH  Google Scholar 

  7. D. R. J. Owen, Y. T. Feng, E. A. de Souza Neto, M. G. Cottrell, F. Wang, F. M. Andrade Pires, and J. Yu, The modelling of multi-fracturing solids and particulate media, Int. J. Numer. Methods Eng. 60, 317 (2004).

    Article  MATH  Google Scholar 

  8. A. Munjiza, The Combined Finite-Discrete Element Method (Wiley & Sons, England, 2004).

    Book  MATH  Google Scholar 

  9. PFC—Particle Flow Code, Version 6.0. Itasca Consulting Group, Inc. Minneapolis, Itasca (2018).

  10. EDEM 2019 User Guide. DEM Solutions Ltd. https://www.edemsimulation.com/.

  11. StarCCM+: https://www.plm.automation.siemens.com/global/en/products/simcenter/STAR-CCM.html.

  12. LIGGGHTS: PUBLIC Documentation, Version 3. DCS Computing GmbH. 2016, https://www.cfdem.com/media/DEM/docu/Manual.html.

  13. Yade Documentation, 2nd ed. (2015). The Yade Project. http://yade-dem.org/doc/.

  14. MatDEM: Fast GPU Matrix Computation of Discrete Element Method. http://matdem.com/index.asp?lg=en.

  15. L. Jing, and O. Stephansson, Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications (Elsevier, Amsterdam, 2007).

    Google Scholar 

  16. C. O’Sullivan, Particulate Discrete Element Modelling: A Geomechanics Perspective (CRC Press, London, New York, 2011).

    Book  Google Scholar 

  17. H.-G. Matuttis, and J. Chen, Understanding the Discrete Element Method Simulation of Non-Spherical Particles for Granular and Multi-Body Systems (John Wiley & Sons, Singapore, 2014).

  18. S. Ji, and L. Lu, Computational Granular Mechanics and Its Engineering Applications (Springer, Singapore, 2020).

    Book  Google Scholar 

  19. C. Hogue, Shape representation and contact detection for discrete element simulations of arbitrary geometries, Eng. Comput. 15, 374 (1998).

    Article  MATH  Google Scholar 

  20. N. Bicanic, in Discrete element methods: Encyclopedia of Computational Mechanics, 2nd ed., edited by Erwin Stein, René de Borst, and T. J. R. Hughes (John Wiley & Sons, England, 2007).

    Google Scholar 

  21. G. Lu, J. R. Third, and C. R. Muller, Discrete element models for non-spherical particle systems: From theoretical developments to applications, Chem. Eng. Sci. 127, 425 (2015).

    Article  Google Scholar 

  22. J. Kafashan, J. Wiącek, N. Abd Rahman, and J. Gan, Two-dimensional particle shapes modelling for DEM simulations in engineering: A review, Granular Matter 21, 80 (2019).

    Article  Google Scholar 

  23. R. Dobry, and A. Tang-tat Ng, Discrete modelling of stress-strain behaviour of granular media at small and large strains, Eng. Comput. 9, 129 (1992).

    Article  Google Scholar 

  24. H. P. Zhu, Z. Y. Zhou, R. Y. Yang, and A. B. Yu, Discrete particle simulation of particulate systems: Theoretical developments, Chem. Eng. Sci. 62, 3378 (2007).

    Article  Google Scholar 

  25. L. Rothenburg, and R. J. Bathurst, Numerical simulation of idealized granular assemblies with planar elliptical particles, Comput. Geotech. 11, 5 (1991).

    Article  Google Scholar 

  26. L. Rothenburg, and R. J. Bathurst, Micromechanical features of granular assemblies with planar elliptical particles, Geotechnique 42, 79 (1992).

    Article  Google Scholar 

  27. J. M. Ting, A robust algorithm for ellipse-based discrete element modelling of granular materials, Comput. Geotech. 13, 175 (1992).

    Article  Google Scholar 

  28. J. M. Ting, M. Khwaja, L. R. Meachum, and J. D. Rowell, An ellipse-based discrete element model for granular materials, Int. J. Numer. Anal. Methods Geomech. 17, 603 (1993).

    Article  MATH  Google Scholar 

  29. T. T. Ng, Numerical simulations of granular soil using elliptical particles, Comput. Geotech. 16, 153 (1994).

    Article  Google Scholar 

  30. X. Lin, and T. T. Ng, Contact detection algorithms for three-dimensional ellipsoids in discrete element modelling, Int. J. Numer. Anal. Methods Geomech. 19, 653 (1995).

    Article  MATH  Google Scholar 

  31. J. R. Williams, and A. P. Pentland, Superquadrics and modal dynamics for discrete elements in interactive design, Eng. Comput. 9, 115 (1992).

    Article  Google Scholar 

  32. P. W. Cleary, and M. L. Sawley, DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge, Appl. Math. Model. 26, 89 (2002).

    Article  MATH  Google Scholar 

  33. P. W. Cleary, DEM prediction of industrial and geophysical particle flows, Particuology 8, 106 (2010).

    Article  Google Scholar 

  34. G. Lu, J. R. Third, and C. R. Muller, Critical assessment of two approaches for evaluating contacts between super-quadric shaped particles in DEM simulations, Chem. Eng. Sci. 78, 226 (2012).

    Article  Google Scholar 

  35. A. Podlozhnyuk, S. Pirker, and C. Kloss, Efficient implementation of superquadric particles in Discrete Element Method within an open-source framework, Comp. Part. Mech. 4, 101 (2017).

    Article  Google Scholar 

  36. S. Wang, Y. Fan, and S. Ji, Interaction between super-quadric particles and triangular elements andits application to hopper discharge, Powder Tech. 339, 534 (2018).

    Article  Google Scholar 

  37. S. Wang, and S. Ji, A unified level set method for simulating mixed granular flows involving multiple non-spherical DEM models in complex structures, Comput. Methods Appl. Mech. Eng. 393, 114802 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  38. Barr, Superquadrics and angle-preserving transformations, IEEE Comput. Grap. Appl. 1, 11 (1981).

    Article  Google Scholar 

  39. E. T. Bowman, K. Soga, and W. Drummond, Particle shape characterisation using Fourier descriptor analysis, Geotechnique 51, 545 (2001).

    Article  Google Scholar 

  40. Z. Lai, Q. Chen, and L. Huang, Fourier series-based discrete element method for computational mechanics of irregular-shaped particles, Comput. Methods Appl. Mech. Eng. 362, 112873 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  41. E. J. Garboczi, and J. W. Bullard, Contact function, uniform-thickness shell volume, and convexity measure for 3D star-shaped random particles, Powder Tech. 237, 191 (2013).

    Article  Google Scholar 

  42. E. J. Garboczi, and J. W. Bullard, 3D analytical mathematical models of random star-shape particles via a combination of X-ray computed microtomography and spherical harmonic analysis, Adv. Powder Tech. 28, 325 (2017).

    Article  Google Scholar 

  43. Z. Zhu, H. Chen, W. Xu, and L. Liu, Parking simulation of three-dimensional multi-sized star-shaped particles, Model. Simul. Mater. Sci. Eng. 22, 035008 (2014).

    Article  Google Scholar 

  44. D. Su, and W. M. Yan, 3D characterization of general-shape sand particles using microfocus X-ray computed tomography and spherical harmonic functions, and particle regeneration using multivariate random vector, Powder Tech. 323, 8 (2018).

    Article  Google Scholar 

  45. D. Su, and X. Wang, Characterization of General Shaped Particles and Discrete Element Simulations (in Chinese) (Tsinghua University Press, Beijing, 2022).

    Google Scholar 

  46. G. Mollon, and J. Zhao, 3D generation of realistic granular samples based on random fields theory and Fourier shape descriptors, Comput. Methods Appl. Mech. Eng. 279, 46 (2014).

    Article  MATH  Google Scholar 

  47. X. Jia, and R. A. Williams, A packing algorithm for particles of arbitrary shapes, Powder Tech. 120, 175 (2001).

    Article  Google Scholar 

  48. X. Jia, M. Gan, R. A. Williams, and D. Rhodes, Validation of a digital packing algorithm in predicting powder packing densities, Powder Tech. 174, 10 (2007).

    Article  Google Scholar 

  49. M. Kodam, R. Bharadwaj, J. Curtis, B. Hancock, and C. Wassgren, Cylindrical object contact detection for use in discrete element method simulations, Part I—Contact detection algorithms, Chem. Eng. Sci. 65, 5852 (2010).

    Article  Google Scholar 

  50. M. Kodam, R. Bharadwaj, J. Curtis, B. Hancock, and C. Wassgren, Cylindrical object contact detection for use in discrete element method simulations, Part II—Experimental validation, Chem. Eng. Sci. 65, 5863 (2010).

    Article  Google Scholar 

  51. Y. Guo, C. Wassgren, W. Ketterhagen, B. Hancock, and J. Curtis, Some computational considerations associated with discrete element modeling of cylindrical particles, Powder Tech. 228, 193 (2012).

    Article  Google Scholar 

  52. Y. T. Feng, K. Han, and D. R. J. Owen, A generic contact detection framework for cylindrical particles in discrete element modelling, Comput. Methods Appl. Mech. Eng. 315, 632 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  53. O. R. Walton, and R. L. Braun, in Simulation of rotary-drum and repose tests for frictional spheres and rigid sphere clusters: Proceedings of Joint DOE/NSF workshop on flow of particles and fluids, Ithaca, 1993.

  54. J. F. Favier, M. H. Abbaspour-Fard, M. Kremmer, and A. O. Raji, Shape representation of axi-symmetrical, non-spherical particles in discrete element simulation using multi-element model particles, Eng. Comput. 16, 467 (1999).

    Article  MATH  Google Scholar 

  55. Y. Ge, and J. M. Fitzpatrick, On the generation of skeletons from discrete euclidean distance maps, IEEE Trans. Pattern Anal. Mach. Intell. 18, 1055 (1996).

    Article  Google Scholar 

  56. P. E. Danielsson, Euclidean distance mapping, Comput. Graphics Image Process. 14, 227 (1980).

    Article  Google Scholar 

  57. C. Q. Li, W. J. Xu, and Q. S. Meng, Multi-sphere approximation of real particles for DEM simulation based on a modified greedy heuristic algorithm, Powder Tech. 286, 478 (2015).

    Article  Google Scholar 

  58. L. Wang, J. Y. Park, and Y. Fu, Representation of real particles for DEM simulation using X-ray tomography, Constr. Build. Mater. 21, 338 (2007).

    Article  Google Scholar 

  59. X. Garcia, J. P. Latham, J. Xiang, and J. P. Harrison, A clustered overlapping sphere algorithm to represent real particles in discrete element modelling, Geotechnique 59, 779 (2009).

    Article  Google Scholar 

  60. H. Kruggel-Emden, S. Rickelt, S. Wirtz, and V. Scherer, A study on the validity of the multi-sphere discrete element method, Powder Tech. 188, 153 (2008).

    Article  Google Scholar 

  61. D. Markauskas, R. Kačianauskas, A. Džiugys, and R. Navakas, Investigation of adequacy of multi-sphere approximation of elliptical particles for DEM simulations, Granular Matter 12, 107 (2010).

    Article  MATH  Google Scholar 

  62. C. Y. Wang, and V. C. Liang, A packing generation scheme for the granular assemblies with planar elliptical particles, Int. J. Numer. Methods Eng. 21, 347 (1997).

    MATH  Google Scholar 

  63. C. Y. Wang, C. F. Wang, and J. Sheng, A packing generation scheme for the granular assemblies with 3D ellipsoidal particles, Int. J. Numer. Anal. Meth. Geomech. 23, 815 (1999).

    Article  MATH  Google Scholar 

  64. A. V. Potapov, and C. S. Campbell, A fast model for the simulation of non-round particles, Granular Matter 1, 9 (1998).

    Article  MATH  Google Scholar 

  65. J. F. Peters, M. A. Hopkins, R. Kala, and R. E. Wahl, A poly-ellipsoid particle for non-spherical discrete element method, Eng. Comput. 26, 645 (2009).

    Article  Google Scholar 

  66. B. Zhang, R. Regueiro, A. Druckrey, and K. Alshibli, Construction of poly-ellipsoidal grain shapes from SMT imaging on sand, and the development of a new DEM contact detection algorithm, Eng. Comput. 35, 733 (2018).

    Article  Google Scholar 

  67. S. Zhao, and J. Zhao, A poly-superellipsoid-based approach on particle morphology for DEM modeling of granular media, Int. J. Numer. Anal. Methods Geomech. 43, 2147 (2019).

    Article  Google Scholar 

  68. J. E. Andrade, K. W. Lim, C. F. Avila, and I. Vlahinić, Granular element method for computational particle mechanics, Comput. Methods Appl. Mech. Eng. 241-244, 262 (2012).

    Article  MATH  Google Scholar 

  69. K. W. Lim, and J. E. Andrade, Granular element method for three-dimensional discrete element calculations, Int. J. Numer. Anal. Meth. Geomech. 38, 167 (2014).

    Article  Google Scholar 

  70. T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng. 194, 4135 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  71. W. Gao, J. Wang, S. Yin, and Y. T. Feng, A coupled 3D isogeometric and discrete element approach for modeling interactions between structures and granular matters, Comput. Methods Appl. Mech. Eng. 354, 441 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  72. W. Gao, and Y. T. Feng, A coupled 3D discrete elements/isogeometric method for particle/structure interaction problems, Comp. Part. Mech. 7, 869 (2020).

    Article  Google Scholar 

  73. P. A. Cundall, Formulation of a three-dimensional distinct element model, Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25, 107 (1988).

    Article  Google Scholar 

  74. J. P. Latham, Y. Lu, and A. Munjiza, A random method for simulating loose packs of angular particles using tetrahedra, Geotechnique 51, 871 (2001).

    Article  Google Scholar 

  75. J. P. Latham, and A. Munjiza, The modelling of particle systems with real shapes, Philos. Trans. R. Soc. London. Ser. A-Math. Phys. Eng. Sci. 362, 1953 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  76. P. Fu, O. R. Walton, and J. T. Harvey, Polyarc discrete element for efficiently simulating arbitrarily shaped 2D particles, Int. J. Numer. Methods Eng. 89, 599 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  77. X. Wang, Z. Y. Yin, D. Su, H. Xiong, and Y. T. Feng, A novel Arcs-based discrete element modeling of arbitrary convex and concave 2D particles, Comput. Methods Appl. Mech. Eng. 386, 114071 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  78. M. A. Hopkins, and J. Tuhkuri, Compression of floating ice fields, J. Geophys. Res. 104, 15815 (1999).

    Article  Google Scholar 

  79. M. A. Hopkins, Discrete element modeling with dilated particles, Eng. Comput. 21, 422 (2004).

    Article  MATH  Google Scholar 

  80. B. Nye, A. V. Kulchitsky, and J. B. Johnson, Intersecting dilated convex polyhedra method for modeling complex particles in discrete element method, Int. J. Numer. Anal. Meth. Geomech. 38, 978 (2014).

    Article  Google Scholar 

  81. S. Ji, S. Sun, and Y. Yan, Discrete element modeling of rock materials with dilated polyhedral elements, Procedia Eng. 102, 1793 (2015).

    Article  Google Scholar 

  82. S. A. Galindo-Torres, and D. M. Pedroso, Molecular dynamics simulations of complex-shaped particles using Voronoi-based spheropolyhedra, Phys. Rev. E 81, 061303 (2010).

    Article  Google Scholar 

  83. Z. Zhu, W. Xu, and H. Chen, The fraction of overlapping interphase around 2D and 3D polydisperse non-spherical particles: Theoretical and numerical models, Comput. Methods Appl. Mech. Eng. 345, 728 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  84. H. Barki, F. Denis, and F. Dupont, Contributing vertices-based Minkowski sum computation of convex polyhedra, Comput.-Aided Des. 41, 525 (2009).

    Article  MATH  Google Scholar 

  85. S. Ji, S. Sun, and Y. Yan, Discrete element modeling of dynamic behaviors of railway ballast under cyclic loading with dilated polyhedra, Int. J. Numer. Anal. Meth. Geomech. 41, 180 (2017).

    Article  Google Scholar 

  86. L. Liu, and S. Ji, A new contact detection method for arbitrary dilated polyhedra with potential function in discrete element method, Int. J. Numer. Methods Eng. 121, 5742 (2020).

    Article  MathSciNet  Google Scholar 

  87. G. Varadhan, and D. Manocha, Accurate Minkowski sum approximation of polyhedral models, Graphical Models 68, 343 (2006).

    Article  MATH  Google Scholar 

  88. F. Thomasset, and A. Dervieux, A finite element method for the simulation of a Rayleigh-Taylor instability, Lectures Notes Math. 771, 145 (1979).

    MathSciNet  MATH  Google Scholar 

  89. D. Meagher, Octree encoding: A new technique for the representation, manipulation and display of arbitrary 3-D objects by computer, Technical Report (Rensselaer Polytechnic Institute, 1980).

  90. J. R. Williams, and R. O’Connor, A linear complexity intersection algorithm for discrete element simulation of arbitrary geometries, Eng. Comput. 12, 185 (1995).

    Article  Google Scholar 

  91. J. R. Williams, and R. O’Connor, Discrete element simulation and the contact problem, Arch. Computat. Methods Eng. 6, 279 (1999).

    Article  MathSciNet  Google Scholar 

  92. I. Vlahinić, E. Andó, G. Viggiani, and J. E. Andrade, Towards a more accurate characterization of granular media: Extracting quantitative descriptors from tomographic images, Granular Matter 16, 9 (2014).

    Article  Google Scholar 

  93. R. Kawamoto, E. Andó, G. Viggiani, and J. E. Andrade, Level set discrete element method for three-dimensional computations with triaxial case study, J. Mech. Phys. Solids 91, 1 (2016).

    Article  MathSciNet  Google Scholar 

  94. K. J. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985).

    Book  MATH  Google Scholar 

  95. Y. T. Feng, and W. Gao, On the strain energy distribution of two elastic solids under smooth contact, Powder Tech. 389, 376 (2021).

    Article  Google Scholar 

  96. Y. T. Feng, An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Basic framework and general contact model, Comput. Methods Appl. Mech. Eng. 373, 113454 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  97. Y. T. Feng, An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Contact volume based model and computational issues, Comput. Methods Appl. Mech. Eng. 373, 113493 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  98. W. Zhou, Y. Huang, T. T. Ng, and G. Ma, A geometric potential-based contact detection algorithm for egg-shaped particles in discrete element modeling, Powder Tech. 327, 152 (2018).

    Article  Google Scholar 

  99. G. T. Houlsby, Potential particles: A method for modelling non-circular particles in DEM, Comput. Geotech. 36, 953 (2009).

    Article  Google Scholar 

  100. P. W. Cleary, N. Stokes, and J. Hurley, in Efficient collision detection for three dimensional super-ellipsoidal particles: Proceedings of 8th International Conference on Field Programmable Logic and Applications, Adelaide, 1997.

  101. J. W. Perram, and M. S. Wertheim, Statistical mechanics of hard ellipsoids, I. Overlap algorithm and the contact function, J. Comput. Phys. 58, 409 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  102. P. Wriggers, Computational Contact Mechanics, 2nd ed. (Springer-Verlag, Berlin, 2006).

    Book  MATH  Google Scholar 

  103. C. Wellmann, C. Lillie, and P. Wriggers, A contact detection algorithm for superellipsoids based on the common-normal concept, Eng. Comput. 25, 432 (2008).

    Article  MATH  Google Scholar 

  104. R. Hart, P. A. Cundall, and J. Lemos, Formulation of a three-dimensional distinct element model, Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25, 117 (1988).

    Article  Google Scholar 

  105. R. E. Barbosa, Discrete Element Models for Granular Materials and Rock Masses, Dissertation for the Doctoral Degree (University of Illinois at Urbana-Champaign, Champaign, 1990).

    Google Scholar 

  106. J. Ghaboussi, and R. Barbosa, Three-dimensional discrete element method for granular materials, Int. J. Numer. Anal. Methods Geomech. 14, 451 (1990).

    Article  Google Scholar 

  107. S. W. Chang, and C. S. Chen, A non-iterative derivation of the common plane for contact detection of polyhedral blocks, Int. J. Numer. Methods Eng. 74, 734 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  108. E. G. Nezami, Y. M. A. Hashash, D. Zhao, and J. Ghaboussi, A fast contact detection algorithm for 3-D discrete element method, Comput. Geotech. 31, 575 (2004).

    Article  Google Scholar 

  109. M. C. Lin, and J. F. Canny, in A fast algorithm for incremental distance calculation: Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, 1991.

  110. J. Cohen, M. Lin, D. Manocha, and K. Ponamgi, in I-COLLIDE: An interactive and exact collision detection system for large scale environments: Proceedings of ACM Interactive 3D Graphics Conference (ACM, New York, 1995), pp. 189–196.

    Google Scholar 

  111. B. Mirtich, V-Clip, ACM Trans. Graph. 17, 177 (1997).

    Article  Google Scholar 

  112. E. G. Nezami, Y. M. A. Hashash, D. Zhao, and J. Ghaboussi, Shortest link method for contact detection in discrete element method, Int. J. Numer. Anal. Meth. Geomech. 30, 783 (2006).

    Article  MATH  Google Scholar 

  113. C. W. Boon, G. T. Houlsby, and S. Utili, A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method, Comput. Geotech. 44, 73 (2012).

    Article  Google Scholar 

  114. H. G. Matuttis, S. Luding, and H. J. Herrmann, Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles, Powder Tech. 109, 278 (2000).

    Article  Google Scholar 

  115. Y. T. Feng, and D. R. J. Owen, A 2D polygon/polygon contact model: Algorithmic aspects, Eng. Comput. 21, 265 (2004).

    Article  MATH  Google Scholar 

  116. F. P. Preparata, and M. I. Shamos, Computational Geometry, An Introduction (Springer, Berlin, 1985).

    Book  MATH  Google Scholar 

  117. K. Han, Y. T. Feng, and D. R. J. Owen, Polygon-based contact resolution for superquadrics, Int. J. Numer. Methods Eng. 66, 485 (2006).

    Article  MATH  Google Scholar 

  118. Y. T. Feng, K. Han, and D. R. J. Owen, in An energy based polyhedron-to-polyhedron contact model: Proceeding of 3rd MIT Conference of Computational Fluid and Solid Mechanics (MIT Press, Cambridge, 2005), pp. 210–214.

    Google Scholar 

  119. Y. T. Feng, K. Han, and D. R. J. Owen, Energy-conserving contact interaction models for arbitrarily shaped discrete elements, Comput. Methods Appl. Mech. Eng. 205-208, 169 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  120. B. Nassauer, T. Liedke, and M. Kuna, Polyhedral particles for the discrete element method, Granular Matter 15, 85 (2013).

    Article  Google Scholar 

  121. N. Govender, D. N. Wilke, C. Y. Wu, J. Khinast, P. Pizette, and W. Xu, Hopper flow of irregularly shaped particles (non-convex polyhedra): GPU-based DEM simulation and experimental validation, Chem. Eng. Sci. 188, 34 (2018).

    Article  Google Scholar 

  122. L. Liu, and S. Y. Ji, A fast detection algorithm based on the envelope function of dilated polyhedron, Sci. Sin.-Phys. Mech. Astron. 49, 064601 (2019).

    Article  Google Scholar 

  123. C. W. Boon, G. T. Houlsby, and S. Utili, A new contact detection algorithm for three-dimensional non-spherical particles, Powder Tech. 248, 94 (2013).

    Article  Google Scholar 

  124. J. Harkness, Potential particles for the modelling of interlocking media in three dimensions, Int. J. Numer. Methods Eng. 80, 1573 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  125. M. Kremmer, and J. F. Favier, A method for representing boundaries in discrete element modelling—part I: Geometry and contact detection, Int. J. Numer. Methods Eng. 51, 1407 (2001).

    Article  MATH  Google Scholar 

  126. M. Kremmer, and J. F. Favier, A method for representing boundaries in discrete element modelling—part II: Kinematics, Int. J. Numer. Methods Eng. 51, 1423 (2001).

    Article  MATH  Google Scholar 

  127. Q. Zhou, W. J. Xu, and G. Y. Liu, A contact detection algorithm for triangle boundary in GPU-based DEM and its application in a large-scale landslide, Comput. Geotech. 138, 104371 (2021).

    Article  Google Scholar 

  128. E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, A fast procedure for computing the distance between complex objects in three-dimensional space, IEEE J. Robot. Automat. 4, 193 (1988).

    Article  Google Scholar 

  129. C. Cameron, in Enhancing GJK: Computing minimum and penetration distances between convex polyhedra: Proceedings of International Conference Robotics and Automation, Albuquerque, 1997.

  130. Y. T. Feng, and Y. Tan, On Minkowski difference-based contact detection in discrete/discontinuous modelling of convex polygons/polyhedra, Eng. Comput. 37, 54 (2020).

    Article  Google Scholar 

  131. G. van de Bergen, in Proximity queries and penetration depth computation on 3D game objects: Proceedings of Game Developers Conference, San Jose, 2001.

  132. Y. T. Feng, and Y. Tan, The Minkowski overlap and the energy-conserving contact model for discrete element modeling of convex nonspherical particles, Int. J. Numer. Methods Eng. 122, 6476 (2021).

    Article  MathSciNet  Google Scholar 

  133. A. Wachs, L. Girolami, G. Vinay, and G. Ferrer, Grains3D, a flexible DEM approach for particles of arbitrary convex shape—Part I: Numerical model and validations, Powder Tech. 224, 374 (2012).

    Article  Google Scholar 

  134. Y. Feng, A generic energy-conserving discrete element modeling strategy for concave particles represented by surface triangular meshes, Int. J. Numer. Methods Eng. 122, 2581 (2021).

    Article  MathSciNet  Google Scholar 

  135. Y. Descantes, F. Tricoire, and P. Richard, Classical contact detection algorithms for 3D DEM simulations: Drawbacks and solutions, Comput. Geotech. 114, 103134 (2019).

    Article  Google Scholar 

  136. X. Wang, Z. Y. Yin, H. Xiong, D. Su, and Y. T. Feng, A spherical-harmonic-based approach to discrete element modeling of 3D irregular particles, Int. J. Numer. Methods Eng. 122, 5626 (2021).

    Article  MathSciNet  Google Scholar 

  137. Y. T. Feng, An effective energy-conserving contact modelling strategy for spherical harmonic particles represented by surface triangular meshes with automatic simplification, Comput. Methods Appl. Mech. Eng. 379, 113750 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  138. J. Duriez, and S. Bonelli, Precision and computational costs of level set-discrete element method (LS-DEM) with respect to DEM, Comput. Geotech. 134, 104033 (2021).

    Article  Google Scholar 

  139. Z. Lai, S. Zhao, J. Zhao, and L. Huang, Signed distance field framework for unified DEM modeling of granular media with arbitrary particle shapes, Comput. Mech. 70, 763 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  140. Y. T. Feng, A general contact theory for non-spherical particles: Proceedings of 7th International Conference on Discrete Element Methods (Springer, 2017), pp 29–35.

  141. W. Kaplan, Integrals Depending on a Parameter-Leibnitz’s Rule, Advanced Calculus, 2nd ed. (Addison-Wesley, Singapore, 1973), pp. 285–288.

    Google Scholar 

  142. L. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes (Cambridge University Press, Boston, Cambridge, 2007).

    Book  MATH  Google Scholar 

  143. D. E. Muller, and F. P. Preparata, Finding the intersection of two convex polyhedra, Theor. Comput. Sci. 7, 217 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  144. S. Zhao, X. Zhou, and W. Liu, Discrete element simulations of direct shear tests with particle angularity effect, Granular Matter 17, 793 (2015).

    Article  Google Scholar 

  145. T. Qiao, J. Li, and S. Ji, A modified discrete element method for concave granular materials based on energy-conserving contact model, Theor. Appl. Mech. Lett. 12, 100325 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant No. 12072217). The author would like to express his sincere thanks to Professor Shunying Ji and Dr. Shiqiang Wang from Dalian University of Technology, China, for kindly sharing with me their large collections of DEM literature on the topics covered, without which this review could not be accomplished in the current form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. T. Feng  (冯云田).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y.T. Thirty years of developments in contact modelling of non-spherical particles in DEM: a selective review. Acta Mech. Sin. 39, 722343 (2023). https://doi.org/10.1007/s10409-022-22343-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22343-x

Navigation