Skip to main content
Log in

Turbulent Poiseuille flow modeling by modified Prandtl-van Driest mixing length

基于改进的Prandtl-van Driest混合长度的湍流Poiseuille流动模型

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The turbulent Poiseuille flow between two parallel plates is one of the simplest possible physical situations, and it has been studied intensively. In this paper, we propose a modified Prandtl-van Driest mixing length that satisfies both boundary conditions and wall damping effects. With our new formulations, we numerically solve the problem and, moreover, propose an approximate analytical solution of mean velocity. As applications of our solution, an approximate analytical friction coefficient of turbulent Poiseuille flow is proposed.

摘要

两个平行板之间的湍流Poiseuille流是最简单的物理情况之一, 此问题已经被深入的研究. 本文提出了一种改进的Prandtl-van Driest混合长度模型, 本模型同时满足边界条件和壁面阻尼效应. 使用我们的新公式, 我们可以求得问题的数值解, 此外, 本文还提出了平均速度的近似解析解. 作为我们解决方案的应用, 推导了湍流Poiseuille流的近似解析摩擦系数.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Prandtl, On Fluid Motions with Very Small Friction (Third International Mathematical Congress, Heidelberg, 1904).

  2. H. Blasius, Grenzschichten in Fljssigkeiten mit kleiner Reibung, Z. Math. Phys. 56, 1 (1908).

    MATH  Google Scholar 

  3. L. Prandtl, Bemerkungen über die Entstehung der Turbulenz, Z. Angew. Math. Mech. 1, 431 (1921).

    Article  MATH  Google Scholar 

  4. L. Prandtl, Bericht über Untersuchungen zur ausgebildeten Turbulenz, Z. Angew. Math. Mech. 5, 136 (1925).

    Article  MATH  Google Scholar 

  5. Th. von Kármán, Über leminere und turbulence Reibung (On Laminer and Turbulent Friction), Z. Angew. Math. Mech. 1, 23 (1921).

    Google Scholar 

  6. L. Prandtl, The mechanics of viscous fluids, in: Aerodynamic Theory Vol III, edited by W. F. Durand (Julius Springer, 1934), pp. 130–143.

    Google Scholar 

  7. H. Tennekes, and J. L. Lumley, A First Course of Turbulence (The MIT Press, Cambridge, 1972).

    Book  MATH  Google Scholar 

  8. H. Schlichting, and K. Gersten, Boundary Layer Theory, 8th ed. (Springer, Berlin, 2003).

    MATH  Google Scholar 

  9. L. D. Landau, and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Butterworth-Heinemann, 1987).

  10. O. Reynolds, On the dynamical theory of incompressible viscous fluids and the determination of the criterion, Phil. Trans. Royal Soc. London. 186, 123 (1895).

    MATH  Google Scholar 

  11. C. M. Millikan, in A critical discussion of turbulent flows in channels and circular tubes: Proceedings of the Fifth International Congress on Applied Mechanics (Wiley, New York, 1939).

    Google Scholar 

  12. J. Nikuradse, Untersuchungen über turbulente Strömungen in nicht kreisförmigen Rohren, Ingenieur-Archiv 1, 306 (1930).

    Article  MATH  Google Scholar 

  13. J. Nikuradse, Gesetzmässigkeiten der turbulenten Stromung in glatten Rohren, Forschung auf dem Gebiet des Ingenieurwesens A. 44 (1934).

  14. R. Baidya, J. Philip, N. Hutchins, J. P. Monty, and I. Marusic, Distance-from-the-wall scaling of turbulent motions in wall-bounded flows, Phys. Fluids 29, 020712 (2017).

    Article  Google Scholar 

  15. R. Absi, A simple eddy viscosity formulation for turbulent boundary layers near smooth walls, Comptes Rendus Mécanique 337, 158 (2009), arXiv: 1106.0985.

    Article  Google Scholar 

  16. Y. Pomeau, and M. Le Berre, Turbulence in a wedge: The case of the mixing layer, Phys. Rev. Fluids 6, 074603 (2021).

    Article  Google Scholar 

  17. Y. Pomeau, and M. Le Berre, Turbulent plane Poiseuille flow, Eur. Phys. J. Plus 136, 1114 (2021), arXiv: 2105.07218.

    Article  Google Scholar 

  18. Z. S. She, X. Chen, and F. Hussain, Quantifying wall turbulence via a symmetry approach: a Lie group theory, J. Fluid Mech. 827, 322 (2017).

    Article  MATH  Google Scholar 

  19. X. Chen, F. Hussain, and Z. S. She, Quantifying wall turbulence via a symmetry approach. Part 2. Reynolds stresses, J. Fluid Mech. 850, 401 (2018).

    Article  MATH  Google Scholar 

  20. B. J. Cantwell, A universal velocity profile for smooth wall pipe flow, J. Fluid Mech. 878, 834 (2019).

    Article  MATH  Google Scholar 

  21. X. Chen, and K. R. Sreenivasan, Reynolds number scaling of the peak turbulence intensity in wall flows, J. Fluid Mech. 908, R3 (2021).

    Article  MATH  Google Scholar 

  22. G. Verhille, Deformability of discs in turbulence, J. Fluid Mech. 933, A3 (2022).

    Article  MATH  Google Scholar 

  23. I. Marusic, W. J. Baars, and N. Hutchins, Scaling of the streamwise turbulence intensity in the context of inner-outer interactions in wall turbulence, Phys. Rev. Fluids 2, 100502 (2017).

    Article  Google Scholar 

  24. P. Luchini, Universality of the turbulent velocity profile, Phys. Rev. Lett. 118, 224501 (2017), arXiv: 1612.07361.

    Article  Google Scholar 

  25. P. Schlatter, R. Örlü, Q. Li, G. Brethouwer, J. H. M. Fransson, A. V. Johansson, P. H. Alfredsson, and D. S. Henningson, Turbulent boundary layers up to Reθ = 2500 studied through simulation and experiment, Phys. Fluids 21, 051702 (2019).

    Article  MATH  Google Scholar 

  26. P. R. Spalart, Direct simulation of a turbulent boundary layer up to Rθ = 1410, J. Fluid Mech. 187, 61 (1988).

    Article  MATH  Google Scholar 

  27. C. E. Willert, J. Soria, M. Stanislas, J. Klinner, O. Amili, M. Eisfelder, C. Cuvier, G. Bellani, T. Fiorini, and A. Talamelli, Near-wall statistics of a turbulent pipe flow at shear Reynolds numbers up to 40000, J. Fluid Mech. 826, R5 (2017).

    Article  Google Scholar 

  28. E. R. van Driest, On turbulent flow near a wall, J. Aeronaut. Sci. 23, 1007 (1956).

    Article  MATH  Google Scholar 

  29. B. H. Sun, The temporal scaling laws of compressible turbulence, Mod. Phys. Lett. B 30, 1650297 (2016), arXiv: 1502.02815.

    Article  Google Scholar 

  30. B. H. Sun, Scaling laws of compressible turbulence, Appl. Math. Mech.-Engl. Ed. 38, 765 (2017).

    Article  Google Scholar 

  31. B. H. Sun, Thirty years of turbulence study in China, Appl. Math. Mech.-Engl. Ed. 40, 193 (2019).

    Article  Google Scholar 

  32. B. H. Sun, Revisiting the Reynolds-averaged Navier-Stokes equations, Open Phys. 19, 853 (2021).

    Article  Google Scholar 

  33. B. H. Sun, Closed form solution of plane-parallel turbulent flow along an unbounded plane surface, Preprints 2021, 2021110008, doi: https://doi.org/10.20944/preprints202111.0008.v4.

  34. M. V. Zagarola, and A. J. Smits, Mean-flow scaling of turbulent pipe flow, J. Fluid Mech. 373, 33 (1998).

    Article  MATH  Google Scholar 

  35. M. Lee, and R. D. Moser, Direct numerical simulation of turbulent channel flow up to, J. Fluid Mech. 774, 395 (2015), arXiv: 1410.7809.

    Google Scholar 

  36. S. Hoyas, M. Oberlack, F. Alcántara-Ávila, S. V. Kraheberger, and J. Laux, Wall turbulence at high friction Reynolds numbers, Phys. Rev. Fluids 7, 014602 (2022).

    Article  Google Scholar 

  37. G. G. Stokes, On the effect of the internal friction of fluids on the motion of pendulums, Trans. Cambridge Philos. Soc. 9 (1851)

Download references

Acknowledgements

This work was supported by Xi’an University of Architecture and Technology (Grant No. 002/2040221134). The author wishes to express his appreciation to Prof. Y. Pomeau for private communication and introduction of his work [17], Prof. X. Chen and Prof. Yun Bao for providing some useful publications, and to Mr. Zhe Liu for extracting the DNS, modelling and experimental data from Ref. [18], which are used to draw Fig. 6. Special thanks goes to my student, Mr. Xuang-Ting Liu, who modified the Maple code provided in the Appendix. I also wish to express my deep gratitude to all anonymous reviewers for their high-level academic comments that helped me to enhance the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Hua Sun  (孙博华).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, BH. Turbulent Poiseuille flow modeling by modified Prandtl-van Driest mixing length. Acta Mech. Sin. 39, 322066 (2023). https://doi.org/10.1007/s10409-022-22066-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22066-x

Navigation