Skip to main content
Log in

Disturbance rejection and performance enhancement of perturbed tri-stable energy harvesters by adaptive finite-time disturbance observer

基于自适应有限时间扰动观测器的摄动三稳态俘能器抗干扰及 性能提高研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Tristable energy harvesters (TEHs) have been proposed to achieve broad frequency bandwidth and superior low-frequency energy harvesting performance. However, due to the coexistence of three potential wells and the sensitivity to system conditions and external disturbances, the desired high-amplitude inter-well oscillation in the TEHs may be replaced by the chaotic or intra-well oscillations with inferior energy output. Specifically, the chaos has an unpredictable trajectory and may cause system damages, lessen the structural durability as well as require a more complicated circuit for power management. Therefore, in this paper, we firstly propose an adaptive finite-time disturbance observer (AFTDO) for performance enhancement of TEHs by detecting the external disturbances that induce the chaos, and reject them for the recovery of the desired inter-well motion. The proposed AFTDO eliminates the need to know in advance the upper bounds of imposed perturbations in conventional observers by means of the proposed adaptive protocols, leading to the higher efficacy of estimation. The mathematical model of the piezoelectric TEH system and the AFTDO is provided. To demonstrate the effectiveness of the AFTDO, a series of numerical simulations have been performed. Results show that for both cases with sinusoidal and impulsive disturbances, the AFTDO can successfully track the trajectories of the disturbance signals with the adaptive gain, and reject the disturbance to enable the TEH to sustain the periodic inter-well oscillation with effective energy harvesting performance.

摘要

三稳态俘能器被提出用于实现宽频带及优越的低频俘能性能. 但是, 由于三稳态俘能器具有三个共存的势阱和对系统状态及 外界扰动的敏感性, 其可能无法产生理想的高振幅阱间振荡运动, 取而代之的是降低俘能性能的混沌或阱内振荡运动. 特别地, 混沌运 动会产生无法预测的运动轨迹, 可能导致俘能系统损坏并降低结构持久性, 且这种运动形态要求俘能器具有更复杂的能量管理电路. 因此, 本文首次提出自适应有限时间扰动观测器(AFTDO), 通过检测并抵制导致混沌运动的外界扰动, 以恢复阱间运动从而增强三稳 态俘能器的俘能性能. 与传统的观测器不同, 本文所提出的AFTDO通过自适应协议克服需提前获得扰动上边界信息才可进行观测的要 求, 从而提高观测器的效能. 本论文提出压电三稳态俘能器系统及AFTDO的数学模型, 通过一系列的数值仿真证明AFTDO的有效性. 结果表明在简谐及脉冲形式的外界扰动下, AFTDO均可成功追踪干扰信号的轨迹且实现自适应增益, 并成功抵制外界扰动使得三稳态 俘能器维持周期性阱间振荡运动, 获得有效俘能性能.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Q. Lin, H. C. Gea, and S. T. Liu, Design of piezoelectric energy harvesting devices subjected to broadband random vibrations by applying topology optimization, Acta Mech. Sin. 27, 730 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Fu, X. Mei, D. Yurchenko, S. Zhou, S. Theodossiades, K. Nakano, and E. M. Yeatman, Rotational energy harvesting for self-powered sensing, Joule 5, 1074 (2021).

    Article  Google Scholar 

  3. K. Chen, Q. Gao, S. Fang, D. Zou, Z. Yang, and W. H. Liao, An auxetic nonlinear piezoelectric energy harvester for enhancing efficiency and bandwidth, Appl. Energy 298, 117274 (2021).

    Article  Google Scholar 

  4. B. Yan, N. Yu, H. Ma, and C. Wu, A theory for bistable vibration isolators, Mech. Syst. Signal Process. 167, 108507 (2022).

    Article  Google Scholar 

  5. W. Jiang, X. Han, L. Chen, and Q. Bi, Improving energy harvesting by internal resonance in a spring-pendulum system, Acta Mech. Sin. 36, 618 (2020).

    Article  MathSciNet  Google Scholar 

  6. B. Bao, and Q. Wang, A rain energy harvester using a self-release tank, Mech. Syst. Signal Process. 147, 107099 (2021).

    Article  Google Scholar 

  7. W. M. Zhang, and L. Zuo, Vibration energy harvesting: From micro to macro scale, Acta Mech. Sin. 36, 555 (2020).

    Article  MathSciNet  Google Scholar 

  8. J. Wang, S. Sun, L. Tang, G. Hu, and J. Liang, On the use of meta-surface for vortex-induced vibration suppression or energy harvesting, Energy Convers. Manage. 235, 113991 (2021).

    Article  Google Scholar 

  9. F. Lu, H. P. Lee, and S. P. Lim, Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications, Smart Mater. Struct. 13, 57 (2003).

    Article  Google Scholar 

  10. Z. Fan, N. Islam, and S. B. Bayne, Towards kilohertz electrochemical capacitors for filtering and pulse energy harvesting, Nano Energy 39, 306 (2017).

    Article  Google Scholar 

  11. X. Rui, Z. Zeng, Y. Zhang, Y. Li, H. Feng, X. Huang, and Z. Sha, Design and experimental investigation of a self-tuning piezoelectric energy harvesting system for intelligent vehicle wheels, IEEE Trans. Veh. Technol. 69, 1440 (2019).

    Article  Google Scholar 

  12. B. Bao, W. Chen, and Q. Wang, A piezoelectric hydro-energy harvester featuring a special container structure, Energy 189, 116261 (2019).

    Article  Google Scholar 

  13. K. Fan, D. Wei, Y. Zhang, P. Wang, K. Tao, and R. Yang, A whirligig-inspired intermittent-contact triboelectric nanogenerator for efficient low-frequency vibration energy harvesting, Nano Energy 90, 106576 (2021).

    Article  Google Scholar 

  14. L. C. Zhao, H. X. Zou, G. Yan, F. R. Liu, T. Tan, K. X. Wei, and W. M. Zhang, Magnetic coupling and flextensional amplification mechanisms for high-robustness ambient wind energy harvesting, Energy Convers. Manage. 201, 112166 (2019).

    Article  Google Scholar 

  15. H. X. Zou, L. C. Zhao, Q. Wang, Q. H. Gao, G. Yan, K. X. Wei, and W. M. Zhang, A self-regulation strategy for triboelectric nanogenerator and self-powered wind-speed sensor, Nano Energy 95, 106990 (2022).

    Article  Google Scholar 

  16. G. Hu, L. Tang, J. Liang, C. Lan, and R. Das, Acoustic-elastic metamaterials and phononic crystals for energy harvesting: A review, Smart Mater. Struct. 30, 085025 (2021).

    Article  Google Scholar 

  17. S. Fang, S. Zhou, D. Yurchenko, T. Yang, and W. H. Liao, Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials: A review, Mech. Syst. Signal Process. 166, 108419 (2022).

    Article  Google Scholar 

  18. S. Fang, K. Chen, J. Xing, S. Zhou, and W. H. Liao, Tuned bistable nonlinear energy sink for simultaneously improved vibration suppression and energy harvesting, Int. J. Mech. Sci. 212, 106838 (2021).

    Article  Google Scholar 

  19. K. Yang, J. Wang, and D. Yurchenko, A double-beam piezo-magnetoelastic wind energy harvester for improving the galloping-based energy harvesting, Appl. Phys. Lett. 115, 193901 (2019).

    Article  Google Scholar 

  20. B. Yan, N. Yu, L. Zhang, H. Ma, C. Wu, K. Wang, and S. Zhou, Scavenging vibrational energy with a novel bistable electromagnetic energy harvester, Smart Mater. Struct. 29, 025022 (2020).

    Article  Google Scholar 

  21. D. M. Huang, J. Y. Chen, S. X. Zhou, X. L. Fang, and W. Li, Response regimes of nonlinear energy harvesters with a resistor-inductor resonant circuit by complexification-averaging method, Sci. China Tech. Sci. 64, 1212 (2021).

    Article  Google Scholar 

  22. N. Yu, H. Ma, C. Wu, G. Yu, and B. Yan, Modeling and experimental investigation of a novel bistable two-degree-of-freedom electromagnetic energy harvester, Mech. Syst. Signal Process. 156, 107608 (2021).

    Article  Google Scholar 

  23. Z. Xie, B. Huang, S. Wang, X. Zhou, Y. Gong, and W. Huang, A hula-hooping-like nonlinear buckled elastic string electromagnetic energy harvester for omnidirectional broadband excitations, Smart Mater. Struct. 29, 075026 (2020).

    Article  Google Scholar 

  24. S. Fang, X. Fu, and W. H. Liao, Modeling and experimental validation on the interference of mechanical plucking energy harvesting, Mech. Syst. Signal Process. 134, 106317 (2019).

    Article  Google Scholar 

  25. S. Fang, S. Wang, S. Zhou, Z. Yang, and W. H. Liao, Exploiting the advantages of the centrifugal softening effect in rotational impact energy harvesting, Appl. Phys. Lett. 116, 063903 (2020).

    Article  Google Scholar 

  26. S. Fang, S. Wang, G. Miao, S. Zhou, Z. Yang, X. Mei, and W. H. Liao, Comprehensive theoretical and experimental investigation of the rotational impact energy harvester with the centrifugal softening effect, Nonlinear Dyn. 101, 123 (2020).

    Article  Google Scholar 

  27. H. Fu, and E. M. Yeatman, Rotational energy harvesting using bistability and frequency up-conversion for low-power sensing applications: Theoretical modelling and experimental validation, Mech. Syst. Signal Process. 125, 229 (2019).

    Article  Google Scholar 

  28. S. Fang, S. Wang, S. Zhou, Z. Yang, and W. H. Liao, Analytical and experimental investigation of the centrifugal softening and stiffening effects in rotational energy harvesting, J. Sound Vib. 488, 115643 (2020).

    Article  Google Scholar 

  29. X. Zhao, Z. Shang, G. Luo, and L. Deng, A vibration energy harvester using AlN piezoelectric cantilever array, Microelectron. Eng. 142, 47 (2015).

    Article  Google Scholar 

  30. Z. Wen, L. Deng, X. Zhao, Z. Shang, C. Yuan, and Y. She, Improving voltage output with PZT beam array for MEMS-based vibration energy harvester: Theory and experiment, Microsyst. Technol. 21, 331 (2015).

    Article  Google Scholar 

  31. R. L. Harne, and K. W. Wang, A review of the recent research on vibration energy harvesting via bistable systems, Smart Mater. Struct. 22, 023001 (2013).

    Article  Google Scholar 

  32. L. de la Roca, J. Peterson, M. Pereira, and A. Cunha Jr, in Control of chaos via OGY method on a bistable energy harvester: Proceedings of 25th ABCM International Congress on Mechanical Engineering (COBEM, 2019).

  33. E. Omidi, and S. N. Mahmoodi, Nonlinear integral resonant controller for vibration reduction in nonlinear systems, Acta Mech. Sin. 32, 925 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Erturk, and D. J. Inman, Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling, J. Sound Vib. 330, 2339 (2011).

    Article  Google Scholar 

  35. A. Yousefpour, A. Haji Hosseinloo, M. Reza Hairi Yazdi, and A. Bahrami, Disturbance observer-based terminal sliding mode control for effective performance of a nonlinear vibration energy harvester, J. Intell. Material Syst. Struct. 31, 1495 (2020).

    Article  Google Scholar 

  36. H. Li, W. Qin, C. Lan, W. Deng, and Z. Zhou, Dynamics and coherence resonance of tri-stable energy harvesting system, Smart Mater. Struct. 25, 015001 (2015).

    Google Scholar 

  37. X. Yang, C. Wang, and S. K. Lai, A magnetic levitation-based tristable hybrid energy harvester for scavenging energy from low-frequency structural vibration, Eng. Struct. 221, 110789 (2020).

    Article  Google Scholar 

  38. T. Yang, and Q. Cao, Dynamics and performance evaluation of a novel tristable hybrid energy harvester for ultra-low level vibration resources, Int. J. Mech. Sci. 156, 123 (2019).

    Article  Google Scholar 

  39. J. Jung, P. Kim, J. I. Lee, and J. Seok, Nonlinear dynamic and energetic characteristics of piezoelectric energy harvester with two rotatable external magnets, Int. J. Mech. Sci. 92, 206 (2015).

    Article  Google Scholar 

  40. F. M. Moukam Kakmeni, S. Bowong, C. Tchawoua, and E. Kaptouom, Dynamics and chaos control in nonlinear electrostatic transducers, Chaos Solitons Fractals 21, 1093 (2004).

    Article  MATH  Google Scholar 

  41. D. Mallick, A. Amann, and S. Roy, Surfing the high energy output branch of nonlinear energy harvesters, Phys. Rev. Lett. 117, 197701 (2016).

    Article  Google Scholar 

  42. M. J. Mirzaei, E. Aslmostafa, M. Asadollahi, M. A. Badamchizadeh, and S. Ghaemi, in Fuzzy terminal sliding mode control for finite-time synchronization of electrostatic and electromechanical transducers: Proceedings of 2020 6th Iranian Conference on Signal Processing and Intelligent Systems, (IEEE, 2020). pp. 1–7.

  43. M. P. Aghababa, A fractional sliding mode for finite-time control scheme with application to stabilization of electrostatic and electromechanical transducers, Appl. Math. Model. 39, 6103 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  44. S. Luo, S. Li, and F. Tajaddodianfar, chaos and lnsducer, Int. J. Bifurcation Chaos 27, 1750203 (2017).

    Article  MATH  Google Scholar 

  45. J. Zhang, and F. Zhu, Observer-based output consensus of a class of heterogeneous multi-agent systems with unmatched disturbances, Commun. Nonlinear Sci. Numer. Simul. 56, 240 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  46. D. Ginoya, P. D. Shendge, and S. B. Phadke, Disturbance observer based sliding mode control of nonlinear mismatched uncertain systems, Commun. Nonlinear Sci. Numer. Simul. 26, 98 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  47. D. Chen, G. Yang, and Z. Han, Impulsive observer for input-to-state stability based synchronization of Lur’e differential inclusion system, Commun. Nonlinear Sci. Numer. Simul. 17, 2990 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  48. J. Su, J. Yang, and S. Li, Continuous finite-time anti-disturbance control for a class of uncertain nonlinear systems, Trans. Inst. Measurement Control 36, 300 (2014).

    Article  Google Scholar 

  49. H. Rabiee, M. Ataei, and M. Ekramian, Continuous nonsingular terminal sliding mode control based on adaptive sliding mode disturbance observer for uncertain nonlinear systems, Automatica 109, 108515 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  50. M. J. Mirzaei, E. Aslmostafa, M. Asadollahi, and M. A. Badamchizadeh, Robust adaptive finite-time stabilization control for a class of nonlinear switched systems based on finite-time disturbance observer, J. Franklin Inst. 358, 3332 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  51. E. Aslmostafa, M. J. Mirzaei, M. Asadollahi, and M. A. Badamchizadeh, Synchronization problem for a class of multi-input multioutput systems with terminal sliding mode control based on finite-time disturbance observer: Application to Chameleon chaotic system, Chaos Solitons Fractals 150, 111191 (2021).

    Article  MATH  Google Scholar 

  52. M. Chen, and W. H. Chen, Sliding mode control for a class of uncertain nonlinear system based on disturbance observer, Int. J. Adapt. Control Signal Process. 26, 98 (2008).

    Google Scholar 

  53. J. Yang, S. Li, and X. Yu, Sliding-mode control for systems with mismatched uncertainties via a disturbance observer, IEEE Trans. Ind. Electron. 60, 160 (2012).

    Article  Google Scholar 

  54. S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, Continuous finite-time control for robotic manipulators with terminal sliding mode, Automatica 41, 1957 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  55. M. J. Mirzaei, M. Mirzaei, E. Aslmostafa, and M. Asadollahi, Robust observer-based stabilizer for perturbed nonlinear complex financial systems with market confidence and ethics risks by finite-time integral sliding mode control, Nonlinear Dyn. 105, 2283 (2021).

    Article  Google Scholar 

  56. D. Ginoya, P. D. Shendge, and S. B. Phadke, Sliding mode control for mismatched uncertain systems using an extended disturbance observer, IEEE Trans. Ind. Electron. 61, 1983 (2013).

    Article  Google Scholar 

  57. S. Li, H. Sun, J. Yang, and X. Yu, Continuous finite-time output regulation for disturbed systems under mismatching condition, IEEE Trans. Automat. Contr. 60, 277 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  58. J. Yang, S. Li, J. Su, and X. Yu, Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances, Automatica 49, 2287 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  59. J. Yang, J. Su, S. Li, and X. Yu, High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach, IEEE Trans. Ind. Inf. 10, 604 (2013).

    Article  Google Scholar 

  60. R. Tchoukuegno, and P. Woafo, Dynamics and active control of motion of a particle in a σ6 potential with a parametric forcing, Phys. D-Nonlinear Phenomena 167, 86 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  61. N. W. Hagood, W. H. Chung, and A. Von Flotow, Modelling of piezoelectric actuator dynamics for active structural control, J. Intell. Mater. Syst. Struct. 1, 327 (1990).

    Article  Google Scholar 

  62. B. L. Ooi, J. M. Gilbert, and A. R. A. Aziz, Analytical and finite-element study of optimal strain distribution in various beam shapes for energy harvesting applications, Acta Mech. Sin. 32, 670 (2016).

    Article  MATH  Google Scholar 

  63. C. Edwards, and Y. B. Shtessel, Adaptive continuous higher order sliding mode control, Automatica 65, 183 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  64. Y. Feng, F. Han, and X. Yu, Chattering free full-order sliding-mode control, Automatica 50, 1310 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  65. P. Gangsar, and R. Tiwari, Comparative investigation of vibration and current monitoring for prediction of mechanical and electrical faults in induction motor based on multiclass-support vector machine algorithms, Mech. Syst. Signal Process. 94, 464 (2017).

    Article  Google Scholar 

  66. S. Lu, Q. He, and J. Wang, A review of stochastic resonance in rotating machine fault detection, Mech. Syst. Signal Process. 116, 230 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Hsin Liao  (廖维新).

Additional information

This work was supported by the National Key R&D Program of China (Grant No. 2020YFA0711700), the International Science and Technology Cooperation Project of Guangdong Province (Grant No. 2021A0505030012), the Hong Kong Innovation and Technology Commission (Grant No. MRP/030/21).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, S., Padar, N., Mirzaei, M.J. et al. Disturbance rejection and performance enhancement of perturbed tri-stable energy harvesters by adaptive finite-time disturbance observer. Acta Mech. Sin. 38, 521535 (2022). https://doi.org/10.1007/s10409-022-21535-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-21535-x

Keywords

Navigation