Skip to main content
Log in

Dynamically compressive behaviors and plastic mechanisms of a CrCoNi medium entropy alloy at various temperatures

CrCoNi中熵合金在不同温度下的动态压缩行为及塑性变形机制

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

As an attractive class of metallic materials, single-phase CrCoNi medium-entropy alloy (MEA) has drawn much attention recently regarding their deformation behaviors, but the dynamically mechanical responses of this alloy at high strain rates remain less studied, especially coupled with extremely low temperatures. In this study, the dynamic deformation behaviors of this CrCoNi MEA were systematically investigated at room temperature (RT) of 298 K and liquid nitrogen temperature (LNT) of 77 K using the split Hopkinson pressure bar (SHPB). This alloy exhibited a combination of higher yield strength and stronger hardening rate upon dynamic compressive deformation when the loading conditions become much harsher (higher strain rate or lower temperature). Detailed microstructure analyses indicated that the strong strain hardening ability during dynamic deformation was mainly attributed to the continuous formation of nanoscale deformation twins. Furthermore, as loaded at LNT, multi-directional deformation twins were activated. Meanwhile, due to the interaction between Shockley partial dislocations and twin boundaries, large-sized deformation-induced FCC-HCP phase transformations at a micrometer scale were also observed within the grains, which not only accommodated the plasticity but also played an important role in improving the hardening capability owing to the appearance of newly generated interfaces.

摘要

作为一种极具吸引力的金属材料, 单相CrCoNi中熵合金(medium-entropy alloy, MEA)的变形行为最近引起了广泛的关注, 但该合金在高应变率, 尤其是高应变率低温耦合条件下的力学响应目前仍然鲜有报道. 本研究使用分离式霍普金森压杆系统地研究了CrCoNi MEA在室温(room temperature, RT)和液氮温度(liquid nitrogen temperature, LNT)下的动态变形行为. 随着应变率升高或温度的降低, 该合金在动态压缩时表现出更高的屈服强度(yield strength, YS)和应变硬化率. 详细的微观结构表征发现, 动态变形过程中较强的应变硬化能力主要归因于纳米级变形孪晶的连续形成. 此外, 当加载温度降低到LNT时, 多取向变形孪晶被激活. 同时, 由于肖克莱不全位错与孪晶界的相互作用, 在晶粒内也观察到了大尺寸的变形诱导的FCC-HCP相变, 这不仅容纳了塑性, 新形成的界面还会提高合金的应变硬化能力.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, and Y. Yang, High-entropy alloy: challenges and prospects, Mater. Today 19, 349 (2016).

    Article  Google Scholar 

  2. D. B. Miracle, High entropy alloys as a bold step forward in alloy development, Nat. Commun. 10, 1805 (2019).

    Article  Google Scholar 

  3. E. P. George, D. Raabe, and R. O. Ritchie, High-entropy alloys, Nat. Rev. Mater. 4, 515 (2019).

    Article  Google Scholar 

  4. D. B. Miracle, and O. N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122, 448 (2017).

    Article  Google Scholar 

  5. W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, and P. K. Liaw, Mechanical behavior of high-entropy alloys, Prog. Mater. Sci. 118, 100777 (2021).

    Article  Google Scholar 

  6. Z. Li, S. Zhao, R. O. Ritchie, and M. A. Meyers, Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys, Prog. Mater. Sci. 102, 296 (2019).

    Article  Google Scholar 

  7. Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci. 61, 1 (2014).

    Article  Google Scholar 

  8. B. Gludovatz, A. Hohenwarter, K. V. S. Thurston, H. Bei, Z. Wu, E. P. George, and R. O. Ritchie, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures, Nat. Commun. 7, 10602 (2016).

    Article  Google Scholar 

  9. B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345, 1153 (2014).

    Article  Google Scholar 

  10. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E. P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater. 61, 5743 (2013).

    Article  Google Scholar 

  11. X. D. Xu, P. Liu, Z. Tang, A. Hirata, S. X. Song, T. G. Nieh, P. K. Liaw, C. T. Liu, and M. W. Chen, Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi, Acta Mater. 144, 107 (2018).

    Article  Google Scholar 

  12. S. F. Liu, Y. Wu, H. T. Wang, J. Y. He, J. B. Liu, C. X. Chen, X. J. Liu, H. Wang, and Z. P. Lu, Stacking fault energy of face-centered-cubic high entropy alloys, Intermetallics 93, 269 (2018).

    Article  Google Scholar 

  13. I. Gutierrez-Urrutia, and D. Raabe, Dislocation and twin substructure evolution during strain hardening of an Fe-22wt.%Mn-0.6wt.%C TWIP steel observed by electron channeling contrast imaging, Acta Mater. 59, 6449 (2011).

    Article  Google Scholar 

  14. Y. F. Shen, N. Jia, R. D. K. Misra, and L. Zuo, Softening behavior by excessive twinning and adiabatic heating at high strain rate in a Fe-20Mn-0.6C TWIP steel, Acta Mater. 103, 229 (2016).

    Article  Google Scholar 

  15. T. W. Zhang, S. G. Ma, D. Zhao, Y. C. Wu, Y. Zhang, Z. H. Wang, and J. W. Qiao, Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: micro-mechanism and constitutive modeling, Int. J. Plast. 124, 226 (2020).

    Article  Google Scholar 

  16. R. Sonkusare, R. Jain, K. Biswas, V. Parameswaran, and N. P. Gurao, High strain rate compression behaviour of single phase CoCuFeMnNi high entropy alloy, J. Alloys Compd. 823, 153763 (2020).

    Article  Google Scholar 

  17. N. Kumar, Q. Ying, X. Nie, R. S. Mishra, Z. Tang, P. K. Liaw, R. E. Brennan, K. J. Doherty, and K. C. Cho, High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy, Mater. Des. 86, 598 (2015).

    Article  Google Scholar 

  18. K. Jiang, T. Ren, G. Shan, T. Ye, L. Chen, C. Wang, F. Zhao, J. Li, and T. Suo, Dynamic mechanical responses of the Al0.1CoCrFeNi high entropy alloy at cryogenic temperature, Mater. Sci. Eng.-A 797, 140125 (2020).

    Article  Google Scholar 

  19. J. M. Park, J. Moon, J. W. Bae, M. J. Jang, J. Park, S. Lee, and H. S. Kim, Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy, Mater. Sci. Eng.-A 719, 155 (2018).

    Article  Google Scholar 

  20. Z. Li, S. Zhao, H. Diao, P. K. Liaw, and M. A. Meyers, High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: remarkable resistance to shear failure, Sci. Rep. 7, 42742 (2017).

    Article  Google Scholar 

  21. J. He, Q. Wang, H. Zhang, L. Dai, T. Mukai, Y. Wu, X. Liu, H. Wang, T. G. Nieh, and Z. Lu, Dynamic deformation behavior of a face-centered cubic FeCoNiCrMn high-entropy alloy, Sci. Bull. 63, 362 (2018).

    Article  Google Scholar 

  22. Z. Li, S. Zhao, S. M. Alotaibi, Y. Liu, B. Wang, and M. A. Meyers, Adiabatic shear localization in the CrMnFeCoNi high-entropy alloy, Acta Mater. 151, 424 (2018).

    Article  Google Scholar 

  23. Y. Ma, F. Yuan, M. Yang, P. Jiang, E. Ma, and X. Wu, Dynamic shear deformation of a CrCoNi medium-entropy alloy with heterogeneous grain structures, Acta Mater. 148, 407 (2018).

    Article  Google Scholar 

  24. B. Gan, J. M. Wheeler, Z. Bi, L. Liu, J. Zhang, and H. Fu, Superb cryogenic strength of equiatomic CrCoNi derived from gradient hierarchical microstructure, J. Mater. Sci. Tech. 35, 957 (2019).

    Article  Google Scholar 

  25. J. Moon, S. I. Hong, J. W. Bae, M. J. Jang, D. Yim, and H. S. Kim, On the strain rate-dependent deformation mechanism of CoCrFeMnNi high-entropy alloy at liquid nitrogen temperature, Mater. Res. Lett. 5, 472 (2017).

    Article  Google Scholar 

  26. Z. Liu, Y. Yu, Z. Yang, Y. Wei, J. Cai, M. Li, and C. Huang, Dynamic experimental studies of A6N01S-T5 aluminum alloy material and structure for high-speed trains, Acta Mech. Sin. 35, 763 (2019).

    Article  Google Scholar 

  27. M. A. Meyers, Dynamic behavior of materials (John Wiley & Sons, New York, 1994).

    Book  MATH  Google Scholar 

  28. Y. Deng, C. C. Tasan, K. G. Pradeep, H. Springer, A. Kostka, and D. Raabe, Design of a twinning-induced plasticity high entropy alloy, Acta Mater. 94, 124 (2015).

    Article  Google Scholar 

  29. G. Laplanche, A. Kostka, O. M. Horst, G. Eggeler, and E. P. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Mater. 118, 152 (2016).

    Article  Google Scholar 

  30. G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E. P. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Mater. 128, 292 (2017).

    Article  Google Scholar 

  31. J. Miao, C. E. Slone, T. M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G. M. Pharr, and M. J. Mills, The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy, Acta Mater. 132, 35 (2017).

    Article  Google Scholar 

  32. K. Jiang, B. Gan, J. Li, Q. Dou, and T. Suo, Towards strength-ductility synergy in a CrCoNi solid solution alloy via nanotwins, Mater. Sci. Eng.-A 816, 141298 (2021).

    Article  Google Scholar 

  33. Y. Ateba Betanda, A. L. Helbert, F. Brisset, M. H. Mathon, T. Waeckerlé, and T. Baudin, Measurement of stored energy in Fe-48%Ni alloys strongly cold-rolled using three approaches: neutron diffraction, Dillamore and KAM approaches, Mater. Sci. Eng.-A 614, 193 (2014).

    Article  Google Scholar 

  34. Y. Qiao, Y. Chen, F. H. Cao, H. Y. Wang, and L. H. Dai, Dynamic behavior of CrMnFeCoNi high-entropy alloy in impact tension, Int. J. Impact Eng. 158, 104008 (2021).

    Article  Google Scholar 

  35. B. C. De Cooman, Y. Estrin, and S. K. Kim, Twinning-induced plasticity (TWIP) steels, Acta Mater. 142, 283 (2018).

    Article  Google Scholar 

  36. Y. H. Jo, S. Jung, W. M. Choi, S. S. Sohn, H. S. Kim, B. J. Lee, N. J. Kim, and S. Lee, Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially re-crystallized VCrMnFeCoNi high-entropy alloy, Nat. Commun. 8, 15719 (2017).

    Article  Google Scholar 

  37. M. A. Meyers, O. Vöhringer, and V. A. Lubarda, The onset of twinning in metals: a constitutive description, Acta Mater. 49, 4025 (2001).

    Article  Google Scholar 

  38. N. L. Okamoto, S. Fujimoto, Y. Kambara, M. Kawamura, Z. M. T. Chen, H. Matsunoshita, K. Tanaka, H. Inui, and E. P. George, Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy, Sci. Rep. 6, 35863 (2016).

    Article  Google Scholar 

  39. C. Niu, C. R. LaRosa, J. Miao, M. J. Mills, and M. Ghazisaeidi, Magnetically-driven phase transformation strengthening in high entropy alloys, Nat. Commun. 9, 1363 (2018).

    Article  Google Scholar 

  40. C. E. Slone, S. Chakraborty, J. Miao, E. P. George, M. J. Mills, and S. R. Niezgoda, Influence of deformation induced nanoscale twinning and FCC-HCP transformation on hardening and texture development in medium-entropy CrCoNi alloy, Acta Mater. 158, 38 (2018).

    Article  Google Scholar 

  41. T. Ye, F. Zhao, L. Chen, K. Jiang, Q. Deng, Y. Chen, Q. Wang, and T. Suo, Effect of strain rate and low temperature on mechanical behaviour and microstructure evolution in twinning-induced plasticity steel, Mater. Sci. Eng.-A 823, 141734 (2021).

    Article  Google Scholar 

  42. K. Wang, D. Wang, and F. Han, Effect of crystalline grain structures on the mechanical properties of twinning-induced plasticity steel, Acta Mech. Sin. 32, 181 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Li  (李建国).

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 12102363), and the China National Funds for Distinguished Young Scientists (Grant No. 12025205).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, K., Li, J., Gan, B. et al. Dynamically compressive behaviors and plastic mechanisms of a CrCoNi medium entropy alloy at various temperatures. Acta Mech. Sin. 38, 421550 (2022). https://doi.org/10.1007/s10409-022-09003-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-09003-w

Keywords

Navigation