Skip to main content
Log in

Effect of gauge corner lubrication on wheel/rail non-Hertzian contact and rail surface damage on the curves

曲线上轨距角润滑对轮轨非赫兹接触和钢轨表面疲劳损伤影响分析

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Wheel/rail rolling contact is a highly nonlinear issue affected by the complicated operating environment (including adhesion conditions and motion attitude of train and track system), which is a fundamental topic for further insight into wheel/rail tread wear and rolling contact fatigue (RCF). The rail gauge corner lubrication (RGCL) devices have been installed on the metro outer rail to mitigate its wear on the curved tracks. This paper presents an investigation into the influence of RGCL on wheel/rail non-Hertzian contact and rail surface RCF on the curves through numerical analysis. To this end, a metro vehicle-slab track interaction dynamics model is extended, in which an accurate wheel/rail non-Hertzian contact algorithm is implemented. The influence of RGCL on wheel/rail creep, contact stress and adhesion-slip distributions and fatigue damage of rail surface are evaluated. The simulation results show that RGCL can markedly affect wheel/rail contact on the tight curves. It is further suggested that RGCL can reduce rail surface RCF on tight curves through the wheel/rail low-friction interactions.

摘要

由于受到列车运营环境(轮轨黏着状态和车-线耦合振动)的影响, 轮轨系统动态相互作用呈现显著的非线性特征, 其对轮轨表面磨耗和疲劳伤损的研究至关重要. 在地铁曲线线路上, 为缓解高轨轨距角异常磨耗, 普遍安装了轨距角润滑装置. 本文从数值仿真的角度, 分析了在曲线上轨距角润滑对轮轨非赫兹接触和钢轨表面疲劳损伤的影响. 基于车-线耦合动力学理论, 建立了地铁车辆-板式轨道三维耦合动力学模型, 模型中考虑了一种精确的非赫兹轮轨滚动接触模型. 分析了轨距角润滑对轮轨蠕滑、 接触应力、 黏-滑分布以及钢轨表面疲劳损伤的影响. 数值研究表明, 在曲线线路上轨距角润滑对轮轨滚动接触影响显著; 另一方面, 轨距角润滑可显著降低轮轨摩擦系数, 从而可进一步缓解钢轨表面疲劳损伤.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Zhai, X. Jin, Z. Wen, and X. Zhao, Wear problems of high-speed wheel/rail systems: Observations, causes, and countermeasures in China, Appl. Mech. Rev. 72, 060801 (2020).

    Article  Google Scholar 

  2. L. Jing, K. Wang, and W. Zhai, Impact vibration behavior of railway vehicles: a state-of-the-art overview, Acta Mech. Sin. 37, 1193 (2021).

    Article  MathSciNet  Google Scholar 

  3. N. Burgelman, Z. Li, and R. Dollevoet, A new rolling contact method applied to conformal contact and the train-turnout interaction, Wear 321, 94 (2014).

    Article  Google Scholar 

  4. S. S. Ding, Q. Li, A. Q. Tian, J. Du, and J. L. Liu, Aerodynamic design on high-speed trains, Acta Mech. Sin. 32, 215 (2016).

    Article  Google Scholar 

  5. S. R. Lewis, R. Lewis, G. Evans, and L. E. Buckley-Johnstone, Assessment of railway curve lubricant performance using a twin-disc tester, Wear 314, 205 (2014).

    Article  Google Scholar 

  6. V. Reddy, G. Chattopadhyay, P. O. Larsson-Kråik, and D. J. Hargreaves, Modelling and analysis of rail maintenance cost, Int. J. Prod. Eco. 105, 475 (2007).

    Article  Google Scholar 

  7. C. Hardwick, R. Lewis, and D. T. Eadie, Wheel and rail wear—Understanding the effects of water and grease, Wear 314, 198 (2014).

    Article  Google Scholar 

  8. W. J. Wang, R. Lewis, B. Yang, L. C. Guo, Q. Y. Liu, and M. H. Zhu, Wear and damage transitions of wheel and rail materials under various contact conditions, Wear 362–363, 146 (2016).

    Article  Google Scholar 

  9. H. Chen, S. Fukagai, Y. Sone, T. Ban, and A. Namura, Assessment of lubricant applied to wheel/rail interface in curves, Wear 314, 228 (2014).

    Article  Google Scholar 

  10. Y. Li, Z. Ren, R. Enblom, S. Stichel, and G. Li, Wheel wear prediction on a high-speed train in China, Vehicle Syst. Dyn. 58, 1839 (2019).

    Article  Google Scholar 

  11. E. Butini, L. Marini, M. Meacci, E. Meli, A. Rindi, X. J. Zhao, and W. J. Wang, An innovative model for the prediction of wheel-Rail wear and rolling contact fatigue, Wear 436–437, 203025 (2019).

    Article  Google Scholar 

  12. Y. Ye, Y. Sun, D. Shi, B. Peng, and M. Hecht, A wheel wear prediction model of non-Hertzian wheel-rail contact considering wheelset yaw: Comparison between simulated and field test results, Wear 474–475, 203715 (2021).

    Article  Google Scholar 

  13. O. Arias-Cuevas, Z. Li, R. I. Popovici, and D. J. Schipper, Simulation of curving behaviour under high traction in lubricated wheel-rail contacts, Vehicle Syst. Dyn. 48, 299 (2010).

    Article  Google Scholar 

  14. G. I. Alarcón, N. Burgelman, J. M. Meza, A. Toro, and Z. Li, The influence of rail lubrication on energy dissipation in the wheel/rail contact: A comparison of simulation results with field measurements, Wear 330–331, 533 (2015).

    Article  Google Scholar 

  15. S. A. Khan, I. Persson, J. Lundberg, and C. Stenström, Prediction of top-of-rail friction control effects on rail RCF suppressed by wear, Wear 380–381, 106 (2017).

    Article  Google Scholar 

  16. B. Liu, S. Bruni, and E. Vollebregt, A non-Hertzian method for solving wheel-rail normal contact problem taking into account the effect of yaw, Vehicle Syst. Dyn. 54, 1226 (2016).

    Article  Google Scholar 

  17. B. Zhu, J. Zeng, D. Zhang, and Y. Wu, A non-Hertzian wheel-rail contact model considering wheelset yaw and its application in wheel wear prediction, Wear 432–433, 202958 (2019).

    Article  Google Scholar 

  18. Y. Sun, W. Zhai, Y. Ye, L. Zhu, and Y. Guo, A simplified model for solving wheel-rail non-Hertzian normal contact problem under the influence of yaw angle, Int. J. Mech. Sci. 174, 105554 (2020).

    Article  Google Scholar 

  19. W. M. Zhai, Vehicle-Track Coupled Dynamics (Springer, Singapore, 2020).

    Book  Google Scholar 

  20. Y. Yang, X. Guo, Y. Sun, L. Ling, T. Zhang, K. Wang, and W. Zhai, Non-Hertzian contact analysis of heavy-haul locomotive wheel/rail dynamic interactions under changeable friction conditions, Vehicle Syst. Dyn., 1 (2021).

  21. L. Ling, X. B. Xiao, and X. S. Jin, Development of a simulation model for dynamic derailment analysis of high-speed trains, Acta Mech. Sin. 30, 860 (2014).

    Article  MathSciNet  Google Scholar 

  22. N. Burgelman, M. S. Sichani, R. Enblom, M. Berg, Z. Li, and R. Dollevoet, Influence of wheel-rail contact modelling on vehicle dynamic simulation, Vehicle Syst. Dyn. 53, 1190 (2014).

    Article  Google Scholar 

  23. J. Piotrowski, and W. Kik, A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations, Vehicle Syst. Dyn. 46, 27 (2008).

    Article  Google Scholar 

  24. X. Quost, M. Sebes, A. Eddhahak, J. B. Ayasse, H. Chollet, P. E. Gautier, and F. Thouverez, Assessment of a semi-Hertzian method for determination of wheel-rail contact patch, Vehicle Syst. Dyn. 44, 789 (2006).

    Article  Google Scholar 

  25. E. Meli, S. Magheri, and M. Malvezzi, Development and implementation of a differential elastic wheel-rail contact model for multibody applications, Vehicle Syst. Dyn. 49, 969 (2011).

    Article  Google Scholar 

  26. M. S. Sichani, R. Enblom, and M. Berg, A novel method to model wheel-rail normal contact in vehicle dynamics simulation, Vehicle Syst. Dyn. 52, 1752 (2014).

    Article  Google Scholar 

  27. M. Spiryagin, M. Sajjad, D. Nielsen, Y. Q. Sun, D. Raman, and G. Chattopadhyay, Research methodology for evaluation of top-of-rail friction management in Australian heavy haul networks, Proc. Instit. Mech. Eng. Part F-J. Rail Rapid Transit 228, 631 (2013).

    Article  Google Scholar 

  28. M. S. Sichani, R. Enblom, and M. Berg, A fast wheel-rail contact model for application to damage analysis in vehicle dynamics simulation, Wear 366–367, 123 (2016).

    Article  Google Scholar 

  29. U. Spangenberg, R. D. Fröhling, and P. S. Els, Influence of wheel and rail profile shape on the initiation of rolling contact fatigue cracks at high axle loads, Vehicle Syst. Dyn. 54, 638 (2016).

    Article  Google Scholar 

  30. S. Hossein-Nia, M. S. Sichani, S. Stichel, and C. Casanueva, Wheel life prediction model—An alternative to the FASTSIM algorithm for RCF, Vehicle Syst. Dyn. 56, 1051 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiyun Wang  (王开云).

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2020YFA0710902), the National Natural Science Foundation of China (Grant Nos. 51735012, 52072317, and U19A20110), and the State Key Laboratory of Traction Power (Grant No. 2021TPL-T08).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Guo, X., Ling, L. et al. Effect of gauge corner lubrication on wheel/rail non-Hertzian contact and rail surface damage on the curves. Acta Mech. Sin. 38, 521522 (2022). https://doi.org/10.1007/s10409-022-09002-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-09002-x

Keywords

Navigation