Skip to main content
Log in

New method for the determination of convective heat transfer coefficient in fully-developed laminar pipe flow

管道充分发展层流中对流换热系数的准确计算新方法

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Convective heat transfer coefficient is one of the most vital parameters which reveals the thermal efficiency of a pipe flow. To obtain such coefficients for problems with variable pipe wall temperature, numerical iterative methods should be used which could be time-consuming and less accurate. In this paper, thermophysical properties of fluids are assumed to be constant. We define a variable related to the temperature gradient of the pipe wall and study the varying law of the local coefficient. Then, a sample-based scheme is proposed to avoid the calculation of a time-consuming problem in the use of solutions with low computing cost. To verify its accuracy, several problems in normal circle pipes with variable factors, such as the various temperatures of the pipe wall, the different radius of the pipe, and various velocities of fluid flow, are well resolved. Meanwhile, its validity in a convergent pipe is also studied. From the obtained results, the high accuracy and efficiency of the proposed scheme can be confirmed. Therefore, the proposed scheme for determining the convective heat transfer coefficient has great potential in engineering problems.

摘要

对流换热系数是体现管道流换热效率的关键因数之一, 在管壁温度变化的问题中, 求解该系数的迭代方法通常较为耗时或不 精确. 本文假设流体的热物理性质是常数, 定义了一个与管壁温度梯度有关的变量, 对局部系数的变化规律进行了研究. 在此基础上, 提出了一种基于样本的计算格式, 该格式使用较低计算成本的样本解, 避免了对原耗时问题的直接求解. 为了证明该算法的精确性, 本 文考虑了不同因素的普通圆管问题, 例如: 不同的管壁温度, 不同的管道半径和不同的流体速度等, 这些问题均得到了很好地求解. 同 时, 该格式在一种渐缩管中的有效性也得到了验证. 数值结果表明, 所提格式具有较高的计算精度和效率. 因此, 在工程问题中可以采 用本文算法快速计算对流换热系数, 具有较好的工程应用前景.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. T. Wu, N. Aubry, J. F. Antaki, and M. Massoudi, Simulation of blood flow in a sudden expansion channel and a coronary artery, J. Comput. Appl. Math. 376, 112856 (2020).

    Article  MathSciNet  Google Scholar 

  2. N. Mao, J. Ye, Z. Quan, H. Zhang, D. Wu, X. Qin, R. Wang, and J. Yu, Tree-like structure driven water transfer in 1D fiber assemblies for Functional Moisture-Wicking Fabrics, Mater. Des. 186, 108305 (2020).

    Article  Google Scholar 

  3. A. Siricharoenpanich, S. Wiriyasart, A. Srichat, and P. Naphon, Thermal management system of CPU cooling with a novel short heat pipe cooling system, Case Studies Thermal Eng. 15, 100545 (2019).

    Article  Google Scholar 

  4. H. Behi, D. Karimi, M. Behi, M. Ghanbarpour, J. Jaguemont, M. A. Sokkeh, F. H. Gandoman, M. Berecibar, and J. Van Mierlo, A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles, Appl. Thermal Eng. 174, 115280 (2020).

    Article  Google Scholar 

  5. Q. Guo, J. X. Zhou, and X. L. Guan, Fluid-structure interaction in Z-shaped pipe with different supports, Acta Mech. Sin. 36, 513 (2020).

    Article  MathSciNet  Google Scholar 

  6. Y. Hong, J. Lin, and W. Chen, Simulation of thermal field in mass concrete structures with cooling pipes by the localized radial basis function collocation method, Int. J. Heat Mass Transfer 129, 449 (2019).

    Article  Google Scholar 

  7. S. Jiang, X. Li, W. Lyu, B. Wang, and W. Shi, Numerical investigation of the energy efficiency of a serial pipe-embedded external wall system considering water temperature changes in the pipeline, J. Building Eng. 31, 101435 (2020).

    Article  Google Scholar 

  8. A. Mitsuishi, M. Sakoh, T. Shimura, K. Iwamoto, A. Murata, and H. Mamori, Direct numerical simulation of convective heat transfer in a pipe with transverse vibration, Int. J. Heat Mass Transfer 148, 119048 (2020).

    Article  Google Scholar 

  9. S. Mao, T. Zhou, D. Wei, W. Liu, and Y. Zhang, Modeling of heat transfer of supercritical water in helical finned double pipe, Int. J. Heat Mass Transfer 180, 121754 (2021).

    Article  Google Scholar 

  10. H. Alizadeh, M. Alhuyi Nazari, R. Ghasempour, M. B. Shafii, and A. Akbarzadeh, Numerical analysis of photovoltaic solar panel cooling by a flat plate closed-loop pulsating heat pipe, Sol. Energy 206, 455 (2020).

    Article  Google Scholar 

  11. C. Li, Y. Guan, C. Jiang, S. Deng, and Z. Lu, Numerical study on the heat transfer, extraction, and storage in a deep-buried pipe, Renew. Energy 152, 1055 (2020).

    Article  Google Scholar 

  12. C. Shen, X. Li, and S. Yan, Numerical study on energy efficiency and economy of a pipe-embedded glass envelope directly utilizing ground-source water for heating in diverse climates, Energy Convers. Manage. 150, 878 (2017).

    Article  Google Scholar 

  13. M. Omidi, M. Farhadi, and M. Jafari, A comprehensive review on double pipe heat exchangers, Appl. Thermal Eng. 110, 1075 (2017).

    Article  Google Scholar 

  14. P. Vocale, F. Bozzoli, S. Rainieri, and G. Pagliarini, Influence of thermal boundary conditions on local convective heat transfer in coiled tubes, Int. J. Thermal Sci. 145, 106039 (2019).

    Article  Google Scholar 

  15. Z. Sheidaei, and P. Akbarzadeh, Analytical solution of the low Reynolds third-grade non-Newtonian fluids flow inside rough circular pipes, Acta Mech. Sin. 36, 1018 (2020).

    Article  MathSciNet  Google Scholar 

  16. H. Bucak, and F. Yilmaz, Heat transfer augmentation using periodically spherical dimple-protrusion patterned walls of twisted tape, Int. J. Thermal Sci. 171, 107211 (2022).

    Article  Google Scholar 

  17. K. Zeghari, H. Louahlia, and S. Le Masson, Experimental investigation of flat porous heat pipe for cooling TV box electronic chips, Appl. Thermal Eng. 163, 114267 (2019).

    Article  Google Scholar 

  18. A. T. Al-Sammarraie, and K. Vafai, Heat transfer augmentation through convergence angles in a pipe, Numer. Heat Transfer Part A-Appl. 72, 197 (2017).

    Article  Google Scholar 

  19. A. Shafieian, M. Khiadani, and A. Nosrati, Strategies to improve the thermal performance of heat pipe solar collectors in solar systems: A review, Energy Convers. Manage. 183, 307 (2019).

    Article  Google Scholar 

  20. H. M. Ali, Applications of combined/hybrid use of heat pipe and phase change materials in energy storage and cooling systems: A recent review, J. Energy Storage. 26, 100986 (2019).

    Article  Google Scholar 

  21. M. H. Buschmann, Critical review of heat transfer experiments in ferrohydrodynamic pipe flow utilising ferronanofluids, Int. J. Thermal Sci. 157, 106426 (2020).

    Article  Google Scholar 

  22. G. Zhong, Y. Tang, X. Ding, L. Rao, G. Chen, K. Tang, W. Yuan, and Z. Li, Experimental study of a large-area ultra-thin flat heat pipe for solar collectors under different cooling conditions, Renew. Energy 149, 1032 (2020).

    Article  Google Scholar 

  23. K. S. Hwang, S. P. Jang, and S. U. S. Choi, Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime, Int. J. Heat Mass Transfer 52, 193 (2009).

    Article  Google Scholar 

  24. A. T. Al-Sammarraie, and K. Vafai, Thermal-hydraulic performance analysis of a convergent double pipe heat exchanger, J. Heat Transfer 141, 051001 (2019).

    Article  Google Scholar 

  25. K. Milani Shirvan, R. Ellahi, S. Mirzakhanlari, and M. Mamourian, Enhancement of heat transfer and heat exchanger effectiveness in a double pipe heat exchanger filled with porous media: Numerical simulation and sensitivity analysis of turbulent fluid flow, Appl. Thermal Eng. 109, 761 (2016).

    Article  Google Scholar 

  26. J. H. Lienhard V, Heat transfer in flat-plate boundary layers: A correlation for laminar, transitional, and turbulent flow, J. Heat Transfer 142, 061805 (2020).

    Article  Google Scholar 

  27. B. H. Yan, C. Wang, and L. G. Li, The technology of micro heat pipe cooled reactor: A review, Ann. Nucl. Energy 135, 106948 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Lin  (林继).

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 12072103), the Fundamental Research Funds for the Central Universities (Grant No. B200202126), the Natural Science Foundation of Jiangsu Province (Grant No. BK20190073), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA202001), and the China Postdoctoral Science Foundation (Grant Nos. 2017M611669 and 2018T110430).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Hong, Y. & Lu, J. New method for the determination of convective heat transfer coefficient in fully-developed laminar pipe flow. Acta Mech. Sin. 38, 321430 (2022). https://doi.org/10.1007/s10409-021-09024-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-021-09024-x

Keywords

Navigation