Skip to main content
Log in

A method to access the electro-mechanical properties of superconducting thin film under uniaxial compression

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Superconducting thin films are widely used in superconducting quantum interferometers, microwave devices, etc. The electrical performance of a superconducting thin film is often affected by structural deformation or stress. Based on four-point bending of a Cu-Be beam, we constructed a device that could apply uniaxial, uniform, compressive strain to a superconducting thin film at both room temperature and the temperature of liquid nitrogen. The thin film was placed into a slot carved in the Cu-Be beam. We optimized the size of this slot via numerical simulation. Our results indicated that the slot width was optimal when it was same as the width of the Cu-Be beam. Notably, the sample bended hardly after machining two slits along width direction on both sides of the slot. A YBa2Cu3O7-δ-SrTiO3 (YBCO-STO) film was used as an example. It was loaded by the aforementioned device to determine its electrical characteristics as functions of the uniaxial-uniform-compressive strain. The optimized design allowed the sample to be compressed to a larger strain without breaking it.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Josephson, B.D.: Possible new effects in superconductive tunneling. Phys. Rev. Lett. 1, 251–253 (1962)

    Article  Google Scholar 

  2. Klein, N., Muller, G., Piel, H., et al.: Millimeter wave surface-resistance of epitaxially grown YBa2Cu3O7-X thin-films. Appl. Phys. Lett. 54, 757–759 (1989)

    Article  Google Scholar 

  3. Rubin, D.L., Green, K., Gruschus, J., et al.: Observation of a narrow superconducting transition at 6 GHz in crystal of YBa2Cu3O7. Phys. Rev. B 38, 6538–6542 (1988)

    Article  Google Scholar 

  4. Ketchen, M.B., Awschalom, D.D., Gallagher, W.J., et al.: Design, fabrication, and performance of integrated of integrated miniature squid susceptometers. IEEE Trans. Magn. 25, 1212–1215 (1989)

    Article  Google Scholar 

  5. Makhlin, Y., Schon, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001)

    Article  Google Scholar 

  6. DewHughes, D.: Application of high temperature superconductors in passive microwave devices. Aust. J. Phys. 50, 363–379 (1997)

    Article  Google Scholar 

  7. Huhtinen, H., Ulriksson, J., Malmivirta, M., et al.: Deposition of YBCO thin films in view of microwave applications. IEEE Trans. Appl. Supercond. 27, 7501205 (2017)

    Article  Google Scholar 

  8. Klein, N.: High-frequency applications of high-temperature superconductor thin films. Prog. Phys. 65, 1387–1425 (2002)

    Article  Google Scholar 

  9. Mansour, R.R.: Microwave superconductivity. IEEE Trans. Microw. Theory Tech. 50, 750–759 (2002)

    Article  Google Scholar 

  10. Newman, N., Lyons, W.G.: High-temperature superconducting microwave devices-fundamental issue in materials, physics, and engineering. J. Supercond. 6, 119–160 (1993)

    Article  Google Scholar 

  11. Awaji, S., Suzuki, T., Oguro, H., et al.: Strain-controlled critical temperature in REBa2Cu3Oy-coated conductors. Sci. Rep. 5, 11156 (2015)

    Article  Google Scholar 

  12. Godeke, A., Dhalle, M., Morelli, A., et al.: A device to investigate the axial strain dependence of the critical current density in superconductors. Rev. Sci. Instrum. 75, 5112–5118 (2004)

    Article  Google Scholar 

  13. He, C.Y., Hou, Y., Liu, L., et al.: Trapped field and related properties in a superconducting-disk magnetized by pulse field. IEEE Trans. Appl. Supercond. 14, 2025–2030 (2004)

    Article  Google Scholar 

  14. Nunoya, Y., Isono, T., Koizumi, N., et al.: Development of strain-applying apparatus for evaluation of ITER Nb3Sn strand. IEEE Trans. Appl. Supercond. 17, 2588–2590 (2007)

    Article  Google Scholar 

  15. Uglietti, D., Seeber, B., Abacherli, V., et al.: Critical currents versus applied strain for industrial Y-123 coated conductors at various temperatures and magnetic fields up to 19T. Supercond. Sci. Technol. 19, 869–872 (2006)

    Article  Google Scholar 

  16. Uglietti, D., Seeber, B., Abacherli, V., et al.: A device for critical current versus strain measurements up to 1000A and 17T on 80 cm long HTS and LTS technical superconductors. Supercond. Sci. Technol. 16, 1000–1004 (2003)

    Article  Google Scholar 

  17. van der Laan, D.C., Ekin, J.W., Douglas, J.F., et al.: Effect of strain, magnetic field and field angle on the critical current density of YBa2Cu3O7-delta coated conductors. Supercond. Sci. Technol. 23, 072001 (2010)

    Article  Google Scholar 

  18. van Eck, H.J.N., van der Laan, D.C., Dhalle, M., et al.: Critical current versus strain research at the University of Twente. Supercond. Sci. Technol. 16, 1026–1030 (2003)

    Article  Google Scholar 

  19. Liu, W., Zhang, X.Y., Liu, C., et al.: A visualization instrument to investigate the mechanical-electro properties of high temperature superconducting tapes under multi-fields. Rev. Sci. Instrum. 87, 075106 (2016)

    Article  Google Scholar 

  20. Wang, X.Z., Zhou, Y.H., Guan, M.Z., et al.: A versatile facility for investigating field-dependent and mechanical properties of superconducting wires and tapes under cryogenic-electro-magnetic multifields. Rev. Sci. Instrum. 89, 085117 (2018)

    Article  Google Scholar 

  21. Zhang, X.Y., Liu, W., Zhou, J., et al.: A direct tensile device to investigate the critical current properties in superconducting tapes. Rev. Sci. Instrum. 85, 025103 (2014)

    Article  Google Scholar 

  22. Yue, D.H., Zhang, X.Y., Zhou, J., et al.: Current transport of the 001-tilt low-angle grain boundary in high temperature superconductors. Appl. Phys. Lett. 103, 232602 (2013)

    Article  Google Scholar 

  23. van der Laan, D.C., Haugan, T.J., Barnes, P.N.: Effect of a compressive uniaxial strain on the critical current density of grain boundaries in superconducting YBa2Cu3O7-delta films. Phys. Rev. Lett. 103, 027005 (2009)

    Article  Google Scholar 

  24. van der Laan, D.C., Haugan, T.J., Barnes, P.N., et al.: The effect of strain on grains and grain boundaries in YBa2Cu3O7-delta coated conductors. Supercond. Sci. Technol. 23, 014004 (2010)

    Article  Google Scholar 

  25. Belenky, G.L., Green, S.M., Roytburd, A., et al.: Effect of stress along the AB plane on the Jc and Tc of YBa2Cu3O7 thin-films. Phys. Rev. B 44, 10117–10120 (1991)

    Article  Google Scholar 

  26. Welp, U., Grimsditch, M., Fleshler, S., et al.: Efffect of uniaxial-stress on the superconducting transition in YBa2Cu3O7. Phys. Rev. Lett. 69, 2130–2133 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grants 11622217, 11872196, and 11902130). This work is also supported by the Fundamental Research Funds for the Central Universities (Grant lzujbky-2018-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Liu, C., Zhou, J. et al. A method to access the electro-mechanical properties of superconducting thin film under uniaxial compression. Acta Mech. Sin. 36, 1046–1050 (2020). https://doi.org/10.1007/s10409-020-00986-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-00986-9

Keywords

Navigation