Skip to main content
Log in

Effect of water injection on the cavitation control:experiments on a NACA66 (MOD) hydrofoil

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The objective of this work is to investigate experimentally controlling cavitating flow over NACA66 (MOD) hydrofoils by means of an active water injection along its suction surface. The continuous water vertically jets out of the chamber inside the hydrofoil through evenly distributed surface holes. Experiments were carried out in cavitation water tunnel, using high-speed visualization technology and the particle image velocimetry (PIV) system to study the sheet/cloud cavity behaviors. We studied the effects of this active control on cavity evolution with four kinds of jet flow at two different jet positions. We analyzed the effect of water injection on the mechanism of the cavitating flow control. The results were all compared with that for the original hydrofoil without jet and show that the active jet can effectively suppress the sheet/cloud cavitation characterized by shrinking the attached cavity size and breaking the large-scaled cloud shedding vortex cavity into small-scaled ones. The optimum effectiveness of cavitation suppression is affected by the jet flow rates and jet positions. The water injection at flow rate coefficient 0.0245 with the jet position of 0.45C reduces the maximum sheet cavity length by 79.4\(\%\) and the cavity shedding is diminished completely, which gives the most superior effect of sheet cavitation suppression. The jet blocks the re-entrant jet moving upstream and weakens the power of re-entrant jet and thus restrains the cavitation development effectively and stabilizes the flow field.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(\alpha \) :

NACA66 (MOD) hydrofoil spanwise length (m)

C :

NACA66 (MOD) hydrofoil chord length (m)

\(C_\text {Q}\) :

Injected mass flow coefficient (−)

\(F_\text {b}\) :

Buoyancy (N)

\(F_\text {cav}\) :

Lift force of the shedding cavity (N)

h :

Height of the test foil midsection (m)

\(L_\text {cav}\) :

Cavity length (m)

\(m_\text {inj}\) :

Mass flow rate of jet flow (kg/s)

\(m_0\) :

Equivalent mass flowrate of liquid of the main flow that would pass through the frontal (midsection) area \(S_0\) of the hydrofoil in case of its absence (kg/s)

\(P_0\) :

Statics pressure (Pa)

\(P_\text {V}\) :

Saturated vapor pressure (Pa)

p :

Instantaneous pressure of particles in PIV experiment

Q :

Volume flow rate (\({{\text {m}^3}}/\text {h}\))

Re :

Reynolds number (−)

\(S_\text {c}\) :

The frontal (midsection) area of the hydrofoil (\({\text {m}}^2\))

\(S_\text {cav}\) :

The instantaneous change of cavity area (\({\text {m}}^2\))

\(T_\text {cycle}\) :

Cavitation evolution time period (s)

\(U_0\) :

Flow velocity of main flow (m/s)

\(U_\text {inj}\) :

Flow velocity of injected jet flow (m/s)

u :

Instantaneous velocity of particles in PIV experiment (m/s)

x,y,z :

Cartesian coordinates (m)

\(\alpha \) :

Angle of attack (AOA) (\({}^{\circ }\))

\(\varGamma \) :

Velocity circulation (\({{\text {m}^2}}/\text {s}\))

\(\Delta \) :

1) Uncertainty in error assessment; 2) Parameters difference between two probe positions

\(\delta \) :

Dimensionless thickness (-)

I :

Turbulence intensity

\(\mu \) :

Dynamic viscosity (kg/m/s)

\(\rho \) :

Density (kg/\(\text {m}^3\))

\(\sigma \) :

Cavitation number (−)

0:

Main flow

\({\text {inj}}\) :

Injected jet flow

\({\text {max}}\) :

Maximum quantity

\({\text {min}}\) :

Minimum quantity

\({\text {opt}}\) :

Optimum jet flow rate coefficient

\({*}\) :

Pulsating quantity

\({\circ }\) :

Original hydrofoil (NACA66 (MOD))

\({\triangle }\) :

Hydrofoil with jet holes at the position of 0.19 chord

\({\square }\) :

Hydrofoil with jet holes at the position of 0.45 chord

BL:

Boundary layer

HIV:

High-speed flow image visualizations

HTI:

High turbulent intensity

PIV:

Particle image velocimetry

RMS:

Root mean square

References

  1. Hutli, E., Nedeljkovic, M., Bonyar, A.: Cavitating flow characteristics, cavity potential and kinetic energy, void fraction and geometrical parameters - analytical and theoretical study validated by experimental investigations. Int. J. Heat Mass Transf. 117, 873–886 (2018)

    Article  Google Scholar 

  2. Liu, M., Tan, L., Cao, S.L.: Cavitation-vortex-turbulence interaction and one-dimensional model prediction of pressure for hydrofoil ALE15 by large eddy simulation. J. Fluids Eng.-Trans. ASME 141, 021103 (2019)

    Article  Google Scholar 

  3. Leger, A.T., Ceccio, S.L.: Examination of the flow near the leading edge of attached cavitation. Part 1. Detachment of two-dimensional and axisymmetric cavities. J. Fluid Mech. 376, 61–90 (1998)

    Article  Google Scholar 

  4. Sun, W.H., Tan, L.: Cavitation-Vortex-Pressure fluctuation interaction in a centrifugal pump using bubble rotation modified cavitation model under partial load. J. Fluids Eng. 142, 051206 (2020)

    Article  Google Scholar 

  5. Kawanami, Y., Kato, H., Yamauchi, H., et al.: Mechanism and control of cloud cavitations. ASME J. Fluids Eng. 119, 788–794 (1997)

    Article  Google Scholar 

  6. Wang, G.Y., Wu, Q., Huang, B.: Dynamics of cavitation-structure interaction. Acta Mech. Sin. 33, 685–708 (2017)

    Article  Google Scholar 

  7. Knapp, R.T., Daily, J.W., Hammitt, F.G.: Cavitation. McGraw Hill, New York (1970)

    Google Scholar 

  8. Arndt, R.E.A.: Cavitation in fluid machinery and hydraulic structures. Annu. Rev. Fluid Mech. 13, 273–326 (1981)

    Article  Google Scholar 

  9. Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford Engineering and Sciences Series, vol. 44. Oxford University Press, Oxford (1995)

    Google Scholar 

  10. Morch, K.A.: Cavity cluster dynamics and cavitation erosion. In: Cavitation Polyphase Flow Forum, New York, USA 1-10 (1981)

  11. Liu, M., Tan, L., Cao, S.L.: Dynamic mode decomposition of cavitating flow around ALE 15 hydrofoil. Renew. Energy 139, 214–227 (2019)

    Article  Google Scholar 

  12. Callenaere, M., Franc, J., Michel, J., et al.: The cavitation instability induced by the development of a re-entrant jet. J. Fluid Mech. 444, 223–256 (2001)

    Article  Google Scholar 

  13. Hao, J.F., Zhang, M.D., Huang, X.: The influence of surface roughness on cloud cavitation flow around hydrofoils. Acta Mech. Sin. 34, 10–21 (2018)

    Article  Google Scholar 

  14. Ganesh, H., Mäkiharju, S.A., Ceccio, S.L.: Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities. J. Fluid Mech. 802, 37–78 (2016)

    Article  MathSciNet  Google Scholar 

  15. Knapp, R.T.: Recent investigations of the mechanics of cavitation and cavitation damage. Trans. ASME 77, 1045–1054 (1955)

    Google Scholar 

  16. Furness, R.A., Hutton, S.P.: Experimental and theoretical studies of two-dimensional fixed-type cavities. J. Fluids Eng. 97, 515–521 (1975)

    Article  Google Scholar 

  17. Kravtsova, A.Y., Markovich, D.M., Pervunin, K.S., et al.: High-speed imaging of cavitation regimes on a round-leading-edge flat plate and NACA0015 hydrofoil. J. Vis. 16, 181–184 (2013)

    Article  Google Scholar 

  18. Li, D.Q., Grekula, M., Lindell, P.: Towards numerical prediction of unsteady sheet cavitation on hydrofoils. J. Hydrodyn. Ser. B 22, 741–746 (2010)

    Google Scholar 

  19. Asnaghi, A., Jahanbakhsh, E., Seif, M.S.: Unsteady multiphase modeling of cavitation around NACA 0015. J. Mar. Sci. Technol. 18, 689–696 (2010)

    Google Scholar 

  20. Liu, M., Tan, L., Liu, Y., et al.: Large eddy simulation of cavitation vortex interaction and pressure fluctuation around hydrofoil ALE 15. Ocean Eng. 163, 264–274 (2018)

    Article  Google Scholar 

  21. Timoshevskiy, M.V., Zapryagaev, I.I., Pervunin, K.S., et al.: Manipulating cavitation by a wall jet: Experiments on a 2D hydrofoil. Int. J. Multiph. Flow 99, 312–328 (2018)

    Article  Google Scholar 

  22. Wang, W., Lu, S.P., Xu, R.D., et al.: Numerical study of hydrofoil surface jet flow on cavitation suppression. J. Drainage Irrig. Mach. Eng. 35, 829–834 (2017)

    Google Scholar 

  23. Wei, X.Z., Su, W.T., Li, X.B., et al.: Effect of blade perforation on Francis hydro-turbine cavitation characteristics. J. Hydraul. Res. 52, 412–420 (2014)

    Article  Google Scholar 

  24. Wu, W., Xiong, Y., Qi, W.J.: Cavitation control of a 2-D hydrofoil under section reshaping. Chin. J. Ship Res. 7, 36–40 (2012)

    Google Scholar 

  25. Wu, W., Xiong, Y.: A reshaping method for anti-cavitating hydrofoil design. J. Shanghai Jiaotong University 47, 877-883,888 (2013)

  26. Wang, C.C., Huang, B., Zhang, M.D., et al.: Effects of air injection on the characteristics of unsteady sheet/cloud cavitation shedding in the convergent-divergent channel. Int. J. Multiph. Flow 106, 1–20 (2018)

    Article  Google Scholar 

  27. Arndt, R.E.A., Ellis, C.R., Paul, S.: Preliminary investigation of the use of air injection to mitigate cavitation erosion. J. Fluids Eng. 117, 498–504 (1995)

    Article  Google Scholar 

  28. Mäkiharju, S.A., Ganesh, H., Ceccio, S.L.: Effect of non-condensable gas injection on cavitation dynamics of partial cavities. In: Journal of Physics: Conference Series, Lausanne, Switzerland, 656, 012161 (2015)

  29. Timoshevskiy, M.V., Zapryagaev, I.I., Pervunin, K.S., et al.: Cavitation control on a 2D hydrofoil through a continuous tangential injection of liquid: Experimental study. In: AIP Conference Proceedings. Penang, Malaysia, 1770, 030026 (2016)

  30. Wang, W., Yi, Q., Wang, Y.Y., et al.: Adaptability research of hydrofoil surface water injection on cavitation suppression. J. Drainage Irrig. Mach. Eng. 35, 6–11 (2017)

    Google Scholar 

  31. Wang, W., Zhang, Q.D., Tang, T., et al.: Numerical study of the impact of water injection holes arrangement on cavitation flow control. Sci. Prog. 103, 1–23 (2019)

    Article  Google Scholar 

  32. Wang, W., Xu, R.D., Yi, Q., et al.: Influence of re-entrant jet strength on cavitation characteristics of hydrofoil. J. Drainage Irrig. Mach. Eng. 34, 921–926 (2016)

    Google Scholar 

  33. Wang, W., Yi, Q., Lu, S.P., et al.: Exploration and research of the impact of hydrofoil surface water injection on cavitation suppression. In: Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 2D: Turbomachinery. Charlotte, North Carolina, USA. June 26-30, (2017)

  34. Huang, B., Young, Y.L., Wang, G., et al.: Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation. ASME J. Fluids Eng. 135, 071301 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 51876022) and the National Basic Research Program of China (Grant 2015CB057301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Wang.

Additional information

The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Tang, T., Zhang, Q.D. et al. Effect of water injection on the cavitation control:experiments on a NACA66 (MOD) hydrofoil. Acta Mech. Sin. 36, 999–1017 (2020). https://doi.org/10.1007/s10409-020-00983-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-00983-y

Keywords

Navigation