Skip to main content
Log in

Cluster oscillation and bifurcation of fractional-order Duffing system with two time scales

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The dynamical behavior on fractional-order Duffing system with two time scales is investigated, and the point-cycle coupling type cluster oscillation is firstly observed herein. When taking the fractional order as bifurcation parameter, the dynamics of the autonomous Duffing system will become more complex than the corresponding integer-order one, and some typical phenomenon exist only in the fractional-order one. Different attractors exist in various parameter space, and Hopf bifurcation only happens while fractional order is bigger than 1 under certain parameter condition. Moreover, the bifurcation behavior of the autonomous system may regulate dynamical phenomenon of the periodic excited system. It results into the point-cycle coupling type cluster oscillation when the fractional order is bigger than 1. The related generation mechanism based on slow-fast analysis method is that the slow variation of periodic excitation makes the system periodically visit different attractors and critical points of different bifurcations of the autonomous system.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pandey, V., Holm, S.: Connecting the grain-shearing mechanism of wave propagation in marine sediments to fractional order wave equations. J. Acoust. Soc. Am. 140, 1–4 (2016)

    Article  Google Scholar 

  2. Pinto, C., Carvalho, A.: A latency fractional order model for HIV dynamics. J. Comput. Appl. Math. 312, 240–256 (2017)

    Article  MathSciNet  Google Scholar 

  3. Sun, Y.F., Xiao, Y., Zheng, C.J., et al.: Modelling long-term deformation of granular soils incorporating the concept of fractional calculus. Acta. Mech. Sin. 32, 112–124 (2016)

    Article  MathSciNet  Google Scholar 

  4. Tarasova, V.V., Tarasov, V.E.: Concept of dynamic memory in economics. Commun. Nonlinear Sci. Numer. Simul. 55, 127–145 (2018)

    Article  MathSciNet  Google Scholar 

  5. Ying, Y.P., Lian, Y.P., Tang, S.Q., et al.: Enriched reproducing kernel particle method for fractional advection–diffusion equation. Acta. Mech. Sin. 34, 515–527 (2018)

    Article  MathSciNet  Google Scholar 

  6. Sun, Z.K., Liu, Y.Y., Liu, K., et al.: Aging transition in mixed active and inactive fractional-order oscillators. Chaos 29, 103–150 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Mansoori, M., Dehestani, M.: Anharmonic 1D actuator model including electrostatic and Casimir forces with fractional damping perturbed by an external force. Acta. Mech. Sin. 34, 528–541 (2018)

    Article  MathSciNet  Google Scholar 

  8. Niu, J.C., Shen, Y.J., Yang, S.P., et al.: Effect of a fractional-order PID controller on the dynamical response of a linear single degree-of-freedom oscillator. J. Vibr. Shock 35, 88–95 (2016)

    Google Scholar 

  9. Shen, Y.J., Wei, P., Yang, S.P.: Primary resonance of fractional-order van der Pol oscillator. Nonlinear Dyn. 77, 1629–1642 (2014)

    Article  MathSciNet  Google Scholar 

  10. Ge, Z.X., Chen, X.J., Hou, W.G.: Forced vibration resonance with fractional derivative damping. J. Appl. Math. A 30, 410–416 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Tan, X., Ding, H., Sun, J.Q., et al.: Primary and super-harmonic resonances of Timoshenko pipes conveying high-speed fluid. Ocean Eng. 203, 1–12 (2020)

    Article  Google Scholar 

  12. Mao, X.Y., Sun, J.Q., Ding, H., et al.: An approximate method for one-dimensional structures with strong nonlinear and nonhomogeneous boundary conditions. J. Sound Vib. 469, 1–14 (2020)

    Article  Google Scholar 

  13. Kheirizad, I., Tavazoei, M.S., Jalali, A.A.: Stability criteria for a class of fractional order systems. Nonlinear Dyn. 61, 153–161 (2010)

    Article  MathSciNet  Google Scholar 

  14. Mohammad, S.T., Mohammad, H.: A note on the stability of fractional order systems. Math. Comput. Simul. 79, 1566–1576 (2009)

    Article  MathSciNet  Google Scholar 

  15. Guo, P., Wang, Y.H., Tao, C.X., et al.: An approximate analytical solution to the family of time fractional Klein-Gordon equations. Sci. Technol. Innov. Herald 27, 47–52 (2009)

    Google Scholar 

  16. Zhu, X.G., Li, Y.X., Wu, B.: Stability analysis of fractional-order Langford systems. J. Shand. Univ. Sci. Technol. 38, 65–71 (2019)

    Google Scholar 

  17. Zhang, S.L.: Multilevel problem of fermentation process and its bioreactor device technology research fermentation process optimization and amplification technology based on process parameters. China Eng. Sci. 3, 37–45 (2001)

    Google Scholar 

  18. Sheintuch, M., Schmidt, J.: Bifurcations to periodic and aperiodic solutions during ammonia oxidation on a platinum wire. J. Phys. Chem. 92, 3404–3411 (1988)

    Article  Google Scholar 

  19. Surana, A., Haller, G.: Ghost manifolds in slow-fast systems with applications to unsteady fluid flow separation. Physica D 237, 1507–1529 (2008)

    Article  MathSciNet  Google Scholar 

  20. Rinzel, J.: Bursting oscillations in an excitable membrane model. Lecture Notes Math. 1151, 304–316 (1985)

    Article  MathSciNet  Google Scholar 

  21. Han, X.J., Bi, Q.S., Kurths, J.: Route to bursting via pulse-shaped explosion. Phys. Rev. E 98, 1–5 (2018)

    Google Scholar 

  22. Wang, Q.Y., Murks, A., Perc, M., et al.: Taming desynchronized cluster with delays in the Macaque cortical network. Chin. Phys. B 20, 121–126 (2011)

    Google Scholar 

  23. Meng, P., Lu, Q.S., Zhao, Y., et al.: Dynamic analysis of synchronous cluster discharge in two compartment neuron model. J. Dyn. Control 14, 566–570 (2016)

    Google Scholar 

  24. Zhang, Z.D., Li, J., Liu, Y.N., et al.: The evolution mechanism of different forms of bursting oscillations in non-smooth dynamical systems. Sci. Sin. Technol. 49, 1031–1039 (2019)

    Article  Google Scholar 

  25. Li, X.H., Hou, J.Y.: Bursting phenomenon in a piecewise mechanical system with parameter perturbation in stiffness. Int. J. Non-Linear Mech. 81, 165–176 (2016)

    Article  Google Scholar 

  26. Hou, J., Yan, X.P., Li, P., et al.: Adaptive time-frequency representation for weak chirp signals based on Duffing oscillator stopping oscillation system. Int. J. Adapt. Control Signal Process. 32, 777–791 (2018)

    Article  MathSciNet  Google Scholar 

  27. Li, X.H., Shen, Y.J., Sun, J.Q., et al.: New periodic-chaotic attractors in slow-fast Duffing system with periodic parametric excitation. Sci. Rep. 9, 1–11 (2019)

    Article  Google Scholar 

  28. Shi, J.F., Zhang, Y.L., Wang, L., et al.: Double-parameter bifurcation and global characteristic analysis of Duffing systems. Noise Vibr. Control 36, 32–37 (2016)

    Google Scholar 

  29. Zhang, Z.D., Peng, M., Qu, Z.F., et al.: Bursting oscillations and mechanism analysis in a non-smooth Duffing system with frequency domain of two time scales. Sci. Sin-Phys. Mech. Astron. 48, 22–33 (2018)

    Google Scholar 

  30. Li, X., Wu, R.C.: Hopf bifurcation analysis of a new commensurate fractional-order hyperchaotic system. Nonlinear Dyn. 78, 279–288 (2014)

    Article  MathSciNet  Google Scholar 

  31. Li, X.H., Tang, J.H., Wang, Y.L., et al.: Approximately analytical solution in slow-fast system based on modified multi-scale method. Appl. Math. Mech. 41, 605–622 (2020)

    Article  Google Scholar 

  32. Han, X.J., Bi, Q.S., Zhang, C., et al.: Delayed bifurcations to repetitive spiking and classification of delay-induced bursting. Int. J. Bifurcat. Chaos 24, 1–23 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 11672191, 11772206 and U1934201), and the Hundred Excellent Innovative Talents Support Program in Hebei University (Grant SLRC2017053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, X. & Shen, Y. Cluster oscillation and bifurcation of fractional-order Duffing system with two time scales. Acta Mech. Sin. 36, 926–932 (2020). https://doi.org/10.1007/s10409-020-00967-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-00967-y

Keywords

Navigation