Skip to main content
Log in

A note on the Galilean invariance of aerodynamic force theories in unsteady incompressible flows

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

As a basic principle in classical mechanics, the Galilean invariance states that the force is the same in all inertial frames of reference. But this principle has not been properly addressed by most unsteady aerodynamic force theories, if the partial force contributed by a local flow structure is to be evaluated. In this note, we discuss the Galilean-invariance conditions of the partial force for several typical theories and numerically test what would happen if these conditions do not hold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vogel, S.: Flight in drosophila. III. Aerodynamic characteristics of fly wings and wing models. J. Exp. Biol. 44, 431–443 (1967)

    Google Scholar 

  2. Willmott, A.P., Ellington, C.P.: The mechanics of flight in the hawkmoth Manduca sexta. II. Aerodynamic consequences of kinematic and morphological variation. J. Exp. Biol. 200, 2723–2745 (1997)

    Google Scholar 

  3. Sun, M., Wu, J.H.: Large aerodynamic force generation by a sweeping wing at low Reynolds number. Acta Mech. Sin. 20, 24–31 (2004)

    Article  Google Scholar 

  4. McMasters, J.H.: The flight of the bumblebee and related myths of entomological engineering: bees help bridge the gap between science and engineering. Am. Scientist 77(2), 164–169 (1989)

    Google Scholar 

  5. Ellington, C.P., van den Berg, C., Thomas, A.P., et al.: Leading-edge vortices in insect flight. Nature 384, 626–630 (1996). https://doi.org/10.1038/384626a0

    Article  Google Scholar 

  6. Bomphrey, R.J., Lawson, N.J., Harding, N.J., et al.: The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex. J. Exp. Biol. 208, 1079–1094 (2005)

    Article  Google Scholar 

  7. Shyy, W., Lian, Y., Liu, H., et al.: Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  8. Eldredge, J.D., Jones, A.R.: Leading-edge vortices: mechanics and modeling. Annu. Rev. Fluid Mech. 51, 75–104 (2019)

    Article  MathSciNet  Google Scholar 

  9. Li, G.J., Lu, X.Y.: Force and power of flapping plates in a fluid. J. Fluid Mech. 712, 598–613 (2012)

    Article  MathSciNet  Google Scholar 

  10. Wang, S.Z., He, G., Zhang, X.: Self-propulsion of flapping bodies in viscous fluids: recent advances and perspectives. Acta Mech. Sin. 32, 980–990 (2016)

    Article  MathSciNet  Google Scholar 

  11. Liu, H., Kolomenskiy, D., Nakata, T., et al.: Unsteady bio-fluid dynamics in flying and swimming. Acta Mech. Sinica 33(4), 663–684 (2017)

    Article  Google Scholar 

  12. Wu, J., Liu, L., Liu, T.: Fundamental theories of aerodynamic force in viscous and compressible complex flows. Prog. Aerosp. Sci. 99, 27–63 (2018)

    Article  Google Scholar 

  13. Yu, Y.: The virtual power principle in fluid mechanics. J. Fluid Mech. 744, 310–328 (2014)

    Article  MathSciNet  Google Scholar 

  14. Quartapelle, L., Napolitano, M.: Force and moment in incompressible flows. AIAA J. 21, 911–913 (1983)

    Article  Google Scholar 

  15. Chang, C.C.: Potential flow and forces for incompressible viscous flow. Proc. R. Soc. Lond. Ser. A 437(1901), 517–525 (1992)

    Article  MathSciNet  Google Scholar 

  16. Hsieh, C.T., Chang, C.C., Chu, C.C.: Revisiting the aerodynamics of hovering flight using simple models. J. Fluid Mech. 623, 121–148 (2009)

    Article  MathSciNet  Google Scholar 

  17. Gao, A.K., Zou, S.F., Shi, Y., et al.: Passing-over leading-edge vortex: the thrust booster in heaving airfoil. AIP Adv. 9(3), 035314 (2019)

    Article  Google Scholar 

  18. Wu, J.Z., Ma, H.Y., Zhou, M.D.: Vorticity and Vortex Dynamics, Springer, Berlin (2006), pp. 617–620

  19. Burgers, J.M.: On the resistance of fluid and vortex motion. Proc. K. Akad. Wet. 23, 774–782 (1920)

    Google Scholar 

  20. Wu, J.C.: Theory for aerodynamic force and moment in viscous flows. AIAA J. 19(4), 432–441 (1981)

    Article  Google Scholar 

  21. Lighthill, M.J.: An Informal Introduction to Theoretical Fluid Mechanics. Clarendon Press, Oxford (1986)

    MATH  Google Scholar 

  22. Meng, X.G., Sun, M.: Aerodynamics and vortical structures in hovering fruitflies. Phys. Fluids 27(3), 031901 (2015)

    Article  Google Scholar 

  23. Kang, L.L., Liu, L.Q., Su, W.D., et al.: Minimum-domain impulse theory for unsteady aerodynamic force. Phys. Fluids 30(1), 016107 (2018)

    Article  Google Scholar 

  24. Cantwell, C.D., Moxeya, D., Comerforda, A., et al.: Nektar++: an open-source spectral/hp element framework. Comput. Phys. Communs. 192, 205–219 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 11472016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiezhi Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, AK., Wu, J. A note on the Galilean invariance of aerodynamic force theories in unsteady incompressible flows. Acta Mech. Sin. 35, 1150–1154 (2019). https://doi.org/10.1007/s10409-019-00896-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00896-5

Keywords

Navigation