Skip to main content
Log in

Space-time correlations in turbulent Rayleigh-Bénard convection

  • Review
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The recent development of the elliptic model (He, et al. Phy. Rev. E, 2006), which predicts that the space-time correlation function C u (r, τ) in a turbulent flow has a scaling form C u (r E , 0) with r E being a combined space-time separation involving spatial separation r and time delay τ, has stimulated considerable experimental efforts aimed at testing the model in various turbulent flows. In this paper, we review some recent experimental investigations of the space-time correlation function in turbulent Rayleigh-Bénard convection. The experiments conducted at different representative locations in the convection cell confirmed the predictions of the elliptic model for the velocity field and passive scalar field, such as local temperature and shadowgraph images. The understanding of the functional form of C u (r, τ) has a wide variety of applications in the analysis of experimental and numerical data and in the study of the statistical properties of small-scale turbulence. A few examples are discussed in the review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mellor, G.L., Yamada, T.: Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics, 20, 851–875 (1982)

    Article  Google Scholar 

  2. Sreenivasan, K.R.: Fluid turbulence. Rev. Mod. Phys. 71, 383–395 (1999)

    Article  Google Scholar 

  3. Wallace, J.M.: Space-time correlations in turbulent flow: A review. Theor. Appl. Mech. Lett. 4, 022003 (2014)

    Article  Google Scholar 

  4. Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 30, 9 (1941)

    Google Scholar 

  5. Townsend, A.A.: The Structure of Turbulence Shear Flow. Cambridge University Press, Cambridge, England (1976)

    Google Scholar 

  6. Warhaft, Z.: Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203–240 (2000)

    Article  MathSciNet  Google Scholar 

  7. Smits, A.J., McKeon, B.J., Marusic, I.: High Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353–375 (2011)

    Article  Google Scholar 

  8. Taylor, G.I.: The spectrum of turbulence. Proc. R. Soc. London A, 164, 476 (1938)

    Article  Google Scholar 

  9. Sreenivasan, K.R., Antonia, R.A.: The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435–472 (1997)

    Article  MathSciNet  Google Scholar 

  10. Pope, S.B.: Turbulent Flow. Cambridge University Press, Cambridge, England (2000)

    Book  Google Scholar 

  11. Kraichnan, R.: Kolmogorov’s hypotheses and Eulerian turbulence theory. Phys. Fluids, 7, 1723 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  12. Tennekes, H.: Eulerian and Lagrangian time microscales in isotropic turbulence. J. Fluid Mech. 67, 561–567 (1975)

    Article  MATH  Google Scholar 

  13. Frisch, U.: Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge, UK (1995)

    MATH  Google Scholar 

  14. Tennekes, H., Lumley, J.L.: A First Course in Turbulence. The MIT Press, Cambridge, Massachusetts (1972)

    Google Scholar 

  15. Pinton, J.F., Labbé, R.: Correction to the Taylor hypothesis in swirling flows. J. Phys. II France, 4, 1461–1468 (1994)

    Google Scholar 

  16. Sano, M., Wu, X.Z., Libchaber, A.: Turbulence in helium-gas free convection. Phys. Rev. A, 40, 6421–6430 (1989)

    Article  Google Scholar 

  17. Niemela, J.J., Skrbek, L, Sreenivasan, K.R., et al.: The wind in confined thermal convection. J. Fluid Mech. 449, 169–178 (2001)

    Article  MATH  Google Scholar 

  18. Sun, C., Zhou, Q., Xia, K.Q.: Cascades of velocity and temperature fluctuations in buoyancy-driven thermal turbulence. Phys. Rev. Lett. 97, 144504 (4 pages) (2006)

    Article  Google Scholar 

  19. Lohse, D., Xia, K.Q.: Small-scale properties of turbulent Rayleigh-Bénard convection. Annu. Rev. Fluid Mech. 42, 335–364 (2010)

    Article  Google Scholar 

  20. He, G.W., Zhang, J.B.: Elliptic model for space-time correlations in turbulent shear flows. Phys. Rev. E, 73, 055303 (4 pages) (2006)

    Article  Google Scholar 

  21. Zhao, X., He, G.W.: Space-time correlations of fluctuating velocities in turbulent shear flows. Phys. Rev. E, 79, 046316 (12 pages) (2009)

    Article  Google Scholar 

  22. He, X., He, G.W., Tong, P.: Small-scale turbulent fluctuations beyond Taylor’s frozen-flow hypothesis. Phys. Rev. E, 81, 065303 (4 pages) (2010)

    Article  Google Scholar 

  23. He, X., Tong, P.: Kraichnans random sweeping hypothesis in homogeneous turbulent convection. Phys. Rev. E, 83, 037302 (4 pages) (2011)

    Article  Google Scholar 

  24. Zhou, Q., Li, C.M., Lu, Z.M., et al.: Experimental investigation of longitudinal space-time correlations of the velocity field in turbulent Rayleigh-Bénard convection. J. Fluid Mech. 683, 94–111 (2011)

    Article  MATH  Google Scholar 

  25. Hogg, J., Ahlers, G.: Reynolds-number measurements for low-Prandtl-number turbulent convection of large-aspect-ratio samples. J. Fluid Mech. 725, 664–680 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. He, G.W., Jin, G.D., Zhao, X.: Scale-similarity model for lagrangian velocity correlations in isotropic and stationary turbulence. Phys. Rev. E, 80, 066313 (7 pages) (2009)

    Article  Google Scholar 

  27. Wilczek, M., Narita, Y.: Wave-number frequency spectrum for turbulence from a random sweeping hypothesis with mean flow. Phys. Rev. E, 86, 066308 (8 pages) (2012)

    Article  Google Scholar 

  28. Ahlers, G., Grossmann, S., Lohse, D.: Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Rev. Mod. Phys. 81, 503–538 (2009)

    Article  Google Scholar 

  29. Ahlers, G.: Turbulent convection. Physics, 2, 74 (7 pages) (2009)

    Article  Google Scholar 

  30. Chillá, F., Schumacher, J.: New perspectives in turbulent Rayleigh-Bénard convection. Eur. Phys. J. E, 35, 58 (2012)

    Article  Google Scholar 

  31. Lui, S.L., Xia, K.Q.: Spatial structure of the thermal boundary layer in turbulent convection. Phys. Rev. E, 57, 5494–5503 (1998)

    Article  Google Scholar 

  32. Du, Y.B., Tong, P.: Turbulent thermal convection in a cell with ordered rough boundaries. J. Fluid Mech. 407, 57 (2000)

    Article  MATH  Google Scholar 

  33. Ahlers, G., Bodenschatz, E., Funfschilling, D., et al.: Logarithmic temperature profiles in turbulent Rayleigh-Bénard convection. Phys. Rev. Lett. 109, 114501 (5 pages) (2012)

    Article  Google Scholar 

  34. He, X., Ching, E.S.C., Tong, P.: Locally averaged thermal dissipation rate in turbulent thermal convection: A decomposition into contributions from different temperature gradient components. Phys. of Fluids, 23, 025106 (13 pages) (2011)

    Article  Google Scholar 

  35. He, X., Tong, P., Ching, E.S.C.: Statistics of the locally averaged thermal dissipation rate in turbulent Rayleigh-Bénard convection. J. of Turbul. 11, 1–10 (2010)

    Article  MathSciNet  Google Scholar 

  36. Ching, E.S.C., Tsang, Y.K., Fok, T.N., et al.: Scaling behavior in turbulent Rayleigh-Bénard convection revealed by conditional structure functions. Phys. Rev. E, 87, 013005 (6 pages) (2013)

    Article  Google Scholar 

  37. Qiu, X.L., Tong, P.: Large scale velocity structures in turbulent thermal convection. Phys. Rev. E, 64, 036304 (13 pages) (2001)

    Article  Google Scholar 

  38. Zhou, Q., Sun, C., Xia, K.Q.: Experimental investigation of homogeneity, isotropy, and circulation of the velocity field in buoyancy-driven turbulence. J. Fluid Mech. 598, 361–372 (2008)

    Article  MATH  Google Scholar 

  39. He, X., Tong, P.: Measurements of the thermal dissipation field in turbulent Rayleigh-Bénard convection. Phys. Rev. E, 79, 026303 (14 pages) (2009)

    Article  Google Scholar 

  40. Cioni, S., Ciliberto, S., Sommeria, J.: Temperature structure functions in turbulent convection at low Prandtl number. Europhys. Lett. 32, 413–418 (1995)

    Article  Google Scholar 

  41. Burghelea, T., Segre, E., Steinberg, V.: Validity of the Taylor hypothesis in a random spatially smooth flow. Physics of Fluids, 17, 103101 (8 pages) (2005)

    Article  Google Scholar 

  42. Castaing, B., Gunaratne, G., Heslot, F., et al.: Scaling of hard thermal turbulence in Rayleigh-Bénard convection. J. Fluid Mech. 204, 1–30 (1989)

    Article  Google Scholar 

  43. He, X., Funfschilling, D., Nobach, H., et al.: Transition to the ultimate state of turbulent Rayleigh-Bénard convection. Phys. Rev. Lett. 108, 024502 (5 pages) (2012)

    Article  Google Scholar 

  44. de Bruyn, J.R., Bodenschatz, E., Morris, S.W., et al.: Apparatus for the study of Rayleigh-Bénard convection in gases under pressure. Rev. Sci. Instrum. 67, 2043 (1996)

    Article  Google Scholar 

  45. Bodenschatz, E., Pesch, W., Ahlers, G.: Recent developments in Rayleigh-Bénard convection. Annu. Rev. Fluid Mech. 32, 709–778 (2000)

    Article  MathSciNet  Google Scholar 

  46. Bouruet-Aubertot, P., Van Haren, H., Lelong, M.P.: Stratified inertial subrange inferred from in situ measurements in the bottom boundary layer of the rockall channel. J. Phys. Oceanogr. 40, 2401 (2010)

    Article  Google Scholar 

  47. He, X., van Gils, D.P.M., Bodenschatz, E., et al.: Logarithmic spatial variations and universal f −1 power spectra of temperature fluctuations in turbulent Rayleigh-Bénard convection. Phys. Rev. Lett. 112, 174501 (5 pages) (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaozhou He or Penger Tong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Tong, P. Space-time correlations in turbulent Rayleigh-Bénard convection. Acta Mech Sin 30, 457–467 (2014). https://doi.org/10.1007/s10409-014-0068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-014-0068-z

Keywords

Navigation