Skip to main content
Log in

Simulation of vortex shedding behind a bluff body flame stabilizer using a hybrid U-RANS/PDF method

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The present study aims at the investigation of the effects of turbulence-chemistry interaction on combustion instabilities using a probability density function (PDF) method. The instantaneous quantities in the flow field were decomposed into the Favre-averaged variables and the stochastic fluctuations, which were calculated by unsteady Reynolds averaged Navier-Stokes (U-RANS) equations and the PDF model, respectively. A joint fluctuating velocityfrequency-composition PDF was used. The governing equations are solved by a consistent hybrid finite volume/Monte-Carlo algorithm on triangular unstructured meshes. A nonreacting flow behind a triangular-shaped bluff body flame stabilizer in a rectilinear combustor was simulated by the present method. The results demonstrate the capability of the present method to capture the large-scale coherent structures. The triple decomposition was performed, by dividing the coherent Favre-averaged velocity into time-averaged value and periodical coherent part, to analyze the coherent and incoherent contributions to Reynolds stresses. A simple modification to the coefficients in the turbulent frequency model will help to improve the simulation results. Unsteady flow fields were depicted by streamlines and vorticity contours. Moreover, the association between turbulence production and vorticity saddle points is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schadow, K.C., Gutmark, E.: Combustion instability related to vortex shedding in dump combustors and their passive control. Prog. Energy Combust. Sci. 18(2), 117–132 (1992)

    Article  Google Scholar 

  2. Renard, P.H., Thévenin, D., Rolon, J.C., et al.: Dynamics of flame/vortex interactions. Prog. Energy Combust. Sci. 26(3), 225–282 (2000)

    Article  Google Scholar 

  3. Candel, S.: Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29, 1–28 (2002)

    Article  Google Scholar 

  4. Kadowaki, S., Hasegawa, T.: Numerical simulation of dynamics of premixed flames: Flame instability and vortex-flame interaction. Prog. Energy Combust. Sci. 31(3), 193–241 (2005)

    Article  Google Scholar 

  5. Bai, X.S., Fuchs, L.: Modelling of turbulent reacting flows past a bluff body: assessment of accuracy and efficiency. Comput. Fluids 23(3), 507–521 (1994)

    Article  MATH  Google Scholar 

  6. Frolov, S.M., Baevich, V., Belyaev, A.: Mechanism of turbulent flame stabilization on a bluff body. Chem. Phys. Rep. 18(8), 1495–1516 (2000)

    Google Scholar 

  7. Fureby, C.: Large-eddy simulation of turbulent anisochoric flows. AIAA J. 33(7), 1263–1272 (1995)

    Article  MATH  Google Scholar 

  8. Fureby, C., Moller, S.I.: Large eddy simulation of reacting flows applied to bluff body stabilized falmes. AIAA J. 33(12), 2339–2347 (1995)

    Article  MATH  Google Scholar 

  9. Fureby, C.: Large eddy simulation of combustin instabilities in a jet engine afterburner model. Combust. Sci. Technol. 161, 213–243 (2000)

    Article  Google Scholar 

  10. Giacomazzi, E., Battaglia, V., Bruno, C.: The coupling of turbulence and chemistry in a premixed bluff-body flame as studied by LES. Combust. Flame 138(4), 320–335 (2004)

    Article  Google Scholar 

  11. Porumbel, I.: Large eddy simulation of bluff body stabilized premixed and partially premixed combustion. [Ph.D. Thesis], Georgia Institute of Technology (2006)

  12. Fujii, S., Eguchi, K.: Cold flow tests of a bluff-body flame stabilizer. J. Fluids Eng. 100(3), 323–334 (1978)

    Article  Google Scholar 

  13. Fujii, S., Eguchi, K.: A comparison of cold and reacting flows around a bluff-body flame stabilizer. J. Fluids Eng. 103(2), 328–334 (1981)

    Article  Google Scholar 

  14. Hilbert, R., Tap, F., El-Rabii, H., et al.: Impact of detailed chemistry and transport models on turbulent combustion simulations. Prog. Energy Combust. Sci. 30(1), 61–117 (2004)

    Article  Google Scholar 

  15. Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11(2), 119–192 (1985)

    Article  Google Scholar 

  16. Pope, S.B.: Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech. 26, 23–63 (1994)

    Article  MathSciNet  Google Scholar 

  17. Colucci, P.J., Jaberi, F.A., Givi, P., et al.: Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 10(2), 499–515 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Raman, V., Pitsch, H., Fox, R.O.: Eulerian transported probability density function sub-filter model for large-eddy simulations of turbulent combustion. Combust. Theory Modelling 10(3), 439–458 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jones, W.P., Navaffo-Martinez, S.: Large eddy simulation of autoignition with a subgrid probability density function method. Combust. Flame 150(3), 170–187 (2007)

    Article  Google Scholar 

  20. Drozda, T.G., Sheikhi, M.R.H., Madnia, C.K., et al.: Developments in formulation and application of the filtered density function. Flow Turbul. Combust. 78(1), 35–67 (2007)

    Article  MATH  Google Scholar 

  21. Muradoglu, M., Jenny, P., Pope, S.B., et al.: A consistent hybrid finite-volume/particle method for the PDF equations of turbulent reactive flows. J. Comput. Phys. 154(2), 342–371 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jenny, P., Pope, S.B., Muradoglu, M., et al.: A hybrid algorithm for the joint PDF equation of turbulent reactive flows. J. Comput. Phys. 166(2), 218–252 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Muradoglu, M., Pope, S.B., Caughey, D.A.: The hybrid method for the PDF equations of turbulent reactive flows: consistency conditions and correction algorithms. J. Comput. Phys. 172(2), 841–878 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhu, M.M., Han, X.S., Ge, H.W., et al.: Simulation of bluff body stabilized flows with hybrid RANS and PDF method. Acta Mech. Sinica 23(3), 263–273 (2007)

    Article  Google Scholar 

  25. Ge, H.W., Zhu, M.M., Chen, Y.L., et al.: Hybrid unsteady RANS and PDF method for turbulent non-reactive and reactive flows. Flow Turbul. Combust. 78(2), 91–109 (2007)

    Article  MATH  Google Scholar 

  26. Hussain, A.K.M.F.: Coherent structures-reality and myth. Phys. Fluids 26(10), 2816–2850 (1983)

    Article  MATH  Google Scholar 

  27. Pope, S.B.: Turbulent Flows. Cambridge University Press (2000)

  28. Van Slooten, P.R., Jayesh, Pope, S.B.: Advances in PDF modelling for inhomogeneous turbulent flows. Phys. Fluids 10(1), 246–265 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Launder, B.E., Sharma, B.I.: Application of the energydissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transf. 1, 131–138 (1974)

    Article  Google Scholar 

  30. Dally, B.B., Fletcher, D.F., Masri, A.R.: Flow and mixing fields of turbulent bluff-body jets and flames. Combust. TheoryModelling 2, 193–219 (1998)

    MATH  Google Scholar 

  31. Franke, R., Rodi, W.: Calculation of vortex shedding past a square cylinder with various turbulence models. In: Turbulent Shear Flows 8, Springer, New York, 189–204 (1993)

    Chapter  Google Scholar 

  32. Bosch, G., Rodi, W.: Simulation of vortex shedding past a square cylinder near a wall. Int. J. Heat Fluid Flow. 17(3), 267–275 (1996)

    Article  Google Scholar 

  33. Rodi, W.: Comparison of LES and RANS calculations of the flow around bluff bodies. J. Wind Eng. Ind. Aerodyn. 71, 55–75 (1997)

    Article  Google Scholar 

  34. Bosch, G., Rodi, W.: Simulation of vortex shedding past a square cylinder with different turbulence models. Int. J. Numer. Meth. Fluids 28(4), 601–616 (1998)

    Article  MATH  Google Scholar 

  35. Zhu, M.M., Chen, Y.L., Ye, T.H., et al.: U-RANS/PDF simulation of vortex shedding past a bluff body. Journal of Engineering Thermo Physics 28(3), 522–524 (2007) (in Chinese)

    Google Scholar 

  36. Cantwell, B., Coles, D.: An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. J. Fluid Mech. 136, 321–374 (1983)

    Article  Google Scholar 

  37. Mohammadi, B.: Fluid dynamics computation with NSC2KE: An user-guide release 1.0. Technical Report RT-0164, INRIA, France (1994)

  38. Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  39. Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Baum, M., Poinsot, T., Thévenin, D.: Accurate boundary conditions for muticomponent reactive flows. J. Comput. Phys. 116(2), 247–261 (1995)

    Article  MATH  Google Scholar 

  41. Löhner, R., Ambrosiano, J.: A vectorized particle tracer for unstructured grids. J. Comput. Phys. 91(1), 22–31 (1990)

    Article  MATH  Google Scholar 

  42. Muradoglu M., Pope S.B.: Local time-stepping algorithm for solving probability density function turbulence model equations. AIAA J. 40(9), 1755–1763 (2002)

    Article  Google Scholar 

  43. Zhou, Y., Antonia, R.A.: Critical points in a turbulent near wake. J. Fluid Mech. 275, 59–81 (1994)

    Article  Google Scholar 

  44. Lyn, D.A., Einav, S., Rodi, W., et al.: A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder. J. Fluid Mech. 304, 285–319 (1995)

    Article  Google Scholar 

  45. Haworth, D.C., Pope S.B.: A generalized Langevin model for turbulent flows. Phys. Fluids 29(2), 387–405 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Ming Zhu.

Additional information

The project was supported by the National Natural Science Foundation of China (50936005), and the Fundamental Research Funds for the Central Universities (WK2090130008, WK2090130011).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, MM., Zhao, PH., Ge, HW. et al. Simulation of vortex shedding behind a bluff body flame stabilizer using a hybrid U-RANS/PDF method. Acta Mech Sin 28, 348–358 (2012). https://doi.org/10.1007/s10409-012-0028-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0028-4

Keywords

Navigation