Skip to main content
Log in

Influences of Lorentz force on the hydrofoil lift

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper, Lorentz forces are proved to be able to suppress separation in flows over hydrofoils. Furthermore, a differential equation of pressure distributions on the hydrofoil surface is derived, from which it is found that BVF (boundary vortex flux) σ is a suitable criterion for describing the lift coefficient variations during the electromagnetic control process. According to our numerical results, the periodic variations of lift for a hydrofoil at an attack angle of 17 are analyzed and its inherent mechanism is discussed in detail with the concept of BVF. On the other hand, the effects of Lorentz force on the hydrofoil’s lift are investigated both experimentally and numerically for different magnitudes and locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Prandtl, L.: Uber Flussigkeitsbewegung bei sehr kleiner Reibung. Verh. III. Intern. Math. Kongr, pp. 484–491. Heidelberg (1904)

  2. Lee S.J., Jang Y.G.: Control of flow around a NACA0012 airfoil with a micro-riblet film. J. Fluid. Struct. 20, 659–672 (2005)

    Article  Google Scholar 

  3. Bajerm J., Myatt J., Christofides P.D.: Drag reduction in flow over a flat plate using active feedback control. Comput. Chem. Eng. 26, 1095–1102 (2002)

    Article  Google Scholar 

  4. Choi H., Moin P., Kim J.: Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75–110 (1994)

    Article  MATH  Google Scholar 

  5. Endo T., Kasagi N., Suzuki Y.: Feedback control of wall turbulence with wall deformation. Int. J. Heat Fluid Fl. 21, 568–575 (2000)

    Article  Google Scholar 

  6. Atkin, C.J., Mughal, M.S.: Parametric studies on the application of distributed roughness elements for laminar flow control. In: Proc. of 35th AIAA Fluid Dynamics Conference and Exhibit, Toronto, Ontario, Canada, 6–9 June (2005)

  7. Atik H., Kim C.Y., Dommelen L.L., Walker J.D.A.: Boundary-layer separation control on a thin airfoil using local suction. J. Fluid Mech. 535, 415–443 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Tsinober A.B.: MHD drags reduction. Prog. Astronaut. Aeronaut. 123, 327–349 (1989)

    Google Scholar 

  9. Gailitis A.K., Lielausis O.A.: On the possibility of drag reduction of a flat plate in an electrolyte. Appl. Magnetohydrodyn. Trudy Inst. Fis. AN Latv. SSR 12, 143–146 (1961)

    Google Scholar 

  10. Nosenchuck, D.M., Brown, G.L.: Discrete spatial control of wall shear stress in a turbulent boundary layer. In: Intl. Conf. on Near-Wall Turbulent Flows, Tempe, AZ, Netherlands, 15–17 Mar. (1993)

  11. Henoch C., Stace J.: Experimental investigation of a salt water turbulent boundary layer modified by an applied streamwise magnethydrodynamic body force. Phys. Fluids 7(6), 1371–1383 (1995)

    Article  Google Scholar 

  12. Berger T., Kim J., Lee C., Lim J.: Turbulent boundary layer control utilizing the Lorentz force. Phys. Fluids 12(3), 631–649 (2000)

    Article  MATH  Google Scholar 

  13. Du Y., Karniadakis G.: Suppressing wall turbulence by means of a transverse traveling wave. Science 288(5469), 1230–1234 (2000)

    Article  Google Scholar 

  14. Weier T., Gerbeth G., Mutschke G., Lielausis O., Lammers G.: Control of flow separation using electromagnetic forces. Flow Turbul. Combust. 71, 5–17 (2003)

    Article  MATH  Google Scholar 

  15. Pang, J., Choi, K., Aessopos, A.: Control of near-wall turbulence for drag reduction by Spanwise oscillating Lorentz force. In: 2nd AIAA Flow Control Conference, Portland, Oregon, 28 June–1 July (2004)

  16. Chen Y.H., Fan B.C., Zhou B.M., Chen Z.H., Zhang H., Li H.Z.: Electro-magnetic control of hydrofoil wake. Chin. J. Theor. Appl. Mech. 40(1), 121–127 (2008) (in Chinese)

    Google Scholar 

  17. Chen Y.H., Fan B.C., Chen Z.H., Zhou B.M.: Experimental and numerical investigations on the electro-magnetic control of hydrofoil wake. Acta Phys. Sin. 57(2), 648–653 (2008) (in Chinese)

    Google Scholar 

  18. Chen Y.H., Fan B.C., Zhou B.M., Zhang H., Li H.Z.: Experiments of the flow field structure control around an aerofoil based on electromagnetic force. J. Exp. Fluid Mech. 21, 64–67 (2007) (in Chinese)

    Google Scholar 

  19. Rogers S.E., Kwak D.: Steady and unsteady solutions of the incompressible Navier-Stokes equations. AIAA J. 29, 603–610 (1991)

    Article  Google Scholar 

  20. Rogers S.E., Kwak D.: Upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations. AIAA J. 28, 253–262 (1990)

    Article  MATH  Google Scholar 

  21. Chen Z.H., Fan B.C.: Numerical investigation on wake of cylinder covered with electro-magnetic actuator. Acta Mech. Sin. 34(6), 978–983 (2002) (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baochun Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Fan, B., Chen, Z. et al. Influences of Lorentz force on the hydrofoil lift. Acta Mech Sin 25, 589–595 (2009). https://doi.org/10.1007/s10409-009-0249-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-009-0249-3

Keywords

Navigation