Skip to main content
Log in

Moderne definitive Radiochemotherapie – State of the Art-Umsetzung und neue Konsolidierungsstrategien

Modern definitive radiochemotherapy—state of the art implementation and new consolidation strategies

  • Leitthema
  • Published:
Zeitschrift für Pneumologie Aims and scope

Zusammenfassung

Hintergrund

Beim lokal fortgeschrittenen nichtkleinzelligen Lungenkarzinom (NSCLC) führt die Ergänzung der Strahlentherapie durch eine Chemotherapie und die Konsolidierung mit Durvalumab zu einer signifikanten Steigerung des Überlebens und stellt die gravierendste Innovation der letzten Dekade dar.

Ziel der Arbeit

Ziel war die Analyse neuer Möglichkeiten für die State-of-the-Art-Umsetzung definitiver Radiochemotherapiekonzepte.

Material und Methoden

Dazu erfolgte die Auswertung prospektiver und randomisierter Studien hinsichtlich der Verbesserungen der Behandlungsergebnisse.

Ergebnisse

Der Überlebensvorteil der konsolidierenden Checkpointinhibitortherapie nach kombinierter Radiochemotherapie mit Durvalumab beträgt in einer aktualisierten Analyse der PACIFIC-Studie für das 5‑Jahres-Überleben 43 % (95%-Konfidenzintervall, 95%-KI: 38–47 %) gegenüber 33 % (27–40 %) in der Placebogruppe, die stratifizierte Hazard Ratio für Tod beträgt 0,72 (95%-KI: 0,59–0,89; p = 0,0025). In den Studien zur Dosiseskalation sind erhöhte Nebenwirkungen an Lunge und Ösophagus beobachtet worden, sodass aus der Steigerung der lokalen Effektivität kein unmittelbarer klinischer Nutzen abzuleiten war. Verbesserte Bildgebung vor und während der Therapie und optimierte Möglichkeiten der Dosisapplikation, v. a. mittels intensitätsmodulierter Radiotherapie (IMRT), erlauben die selektive Schonung gesunder Strukturen, was die Fähigkeit zur sicheren Therapieintensivierung auch im Zusammenhang mit neuen immunmodulatorischen Substanzkombinationen erhöht.

Schlussfolgerung

Die Einbindung der Immuntherapie, der stringente Einsatz der Fluordesoxyglukose-Positronenemissionstomographie (FDG-PET) in Staging und Bestrahlungsplanung, die flächendeckende Anwendung hochkonformaler Bestrahlungstechniken (IMRT; volumenmodulierte Arc-Therapie, VMAT) und die konsequente Anwendung der bildgeführten Strahlentherapie haben zu signifikanten Verbesserungen der Behandlungsergebnisse geführt.

Abstract

Background

In locally advanced non-small-cell lung cancer (NSCLC), the addition of chemotherapy to radiotherapy and consolidation with durvalumab leads to a significant increase in overall survival and represents the most profound innovation of the last decade.

Objectives

Analysis of new possibilities for the state-of-the-art implementation of definitive radiochemotherapy concepts.

Materials and methods

Evaluation of prospective and randomised studies regarding improvements in treatment outcomes.

Results

Overall survival benefit of consolidating checkpoint inhibitor therapy after combined radiochemotherapy with durvalumab is 43% (95% confidence interval 38–47%) versus 33% (27–40%) in the placebo group in an updated analysis of the PACIFIC trial for 5‑year survival; stratified hazard ratio for death is 0.72 (95% CI 0.59–0.89, p = 0.0025). In the dose escalation studies, increased pulmonary and oesophageal side effects were observed, so no immediate clinical benefit could be derived from the increase in local efficacy. Improved imaging before and during therapy and optimised possibilities of dose application, especially by using intensity-modulated radiotherapy (IMRT), allow selective sparing of healthy structures, which increases the ability to safely intensify radiotherapy also in connection with new immunomodulatory substance combinations.

Conclusion

The integration of immunotherapy, the stringent use of fluorodeoxyglucose positron emission tomography (FDG-PET) in staging and radiation planning, the widespread use of highly conformal radiation techniques (IMRT; volumetric modulated arc therapy, VMAT) and the consistent application of image-guided radiotherapy have led to significant improvements in treatment outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Antonia SJ, Villegas A, Daniel D et al (2018) Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med. https://doi.org/10.1056/NEJMoa1809697

    Article  PubMed  Google Scholar 

  2. Aupérin A, Le Péchoux C, Rolland E et al (2010) Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol 28:2181–2190

    Article  PubMed  Google Scholar 

  3. Boda-Heggemann J, Knopf AC, Simeonova-Chergou A et al (2016) Deep inspiration breath hold-based radiation therapy: a clinical review. Int J Radiat Oncol Biol Phys 94:478–492

    Article  PubMed  Google Scholar 

  4. Bradley JD, Hu C, Komaki RR et al (2020) Long-term results of NRG oncology RTOG 0617: standard-versus high-dose chemoradiotherapy with or without cetuximab for unresectable stage III non-small-cell lung cancer. J Clin Oncol 38:706–714

    Article  CAS  PubMed  Google Scholar 

  5. Chang JY, Li H, Zhu XR et al (2014) Clinical implementation of intensity modulated proton therapy for thoracic malignancies. Int J Radiat Oncol Biol Phys 90:809–818

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chun SG, Hu C, Choy H et al (2017) Impact of intensity-modulated radiation therapy technique for locally advanced non-small-cell lung cancer: a secondary analysis of the NRG oncology RTOG 0617 randomized clinical trial. J Clin Oncol 35:56–62

    Article  PubMed  Google Scholar 

  7. Crockett CB, Samson P, Chuter R et al (2021) Initial clinical experience of MR-guided radiotherapy for non-small cell lung cancer. Front Oncol 11:617681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Ruysscher D, Faivre-Finn C, Moeller D, Lung Group and the Radiation Oncology Group of the European Organization for Research and Treatment of Cancer (EORTC) et al (2017) European organization for research and treatment of cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiother Oncol 124:1–10

    Article  PubMed  Google Scholar 

  9. Eaton BR, Pugh SL, Bradley JD et al (2016) Institutional enrollment and survival among NSCLC patients receiving chemoradiation: NRG oncology radiation therapy oncology group (RTOG) 0617. J Natl Cancer Inst 108:djw34. https://doi.org/10.1093/jnci/djw034

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gkika E, Schimek-Jasch T, Kremp S et al (2021) Impact of radiotherapy protocol adherence in NSCLC patients treated with concurrent chemoradiation: RTQA results of the PET-Plan trial. Radiother Oncol 163:32–38

    Article  PubMed  Google Scholar 

  11. Grills IS, Yan D, Martinez AA et al (2003) Potential for reduced toxicity and dose escalation in the treatment of inoperable non-small-cell lung cancer: a comparison of intensity-modulated radiation therapy (IMRT), 3D conformal radiation, and elective nodal irradiation. Int J Radiat Oncol Biol Phys 57:875–890

    Article  PubMed  Google Scholar 

  12. Guberina M, Darwiche K, Hautzel H et al (2021) Impact of EBUS-TBNA in addition to [18F]FDG-PET/CT imaging on target volume definition for radiochemotherapy in stage III NSCLC. Eur J Nucl Med Mol Imaging 48:2894–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jabbour SK, Lee KH, Frost N et al (2021) Pembrolizumab plus concurrent chemoradiation therapy in patients with unresectable, locally advanced, stage III non-small cell lung cancer: the phase 2 KEYNOTE-799 nonrandomized trial. JAMA Oncol 7:1–9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kepka L, Socha J (2015) PET-CT use and the occurrence of elective nodal failure in involved field radiotherapy for non-small cell lung cancer: a systematic review. Radiother Oncol 115:151–156

    Article  PubMed  Google Scholar 

  15. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF): (2022) Prävention, Diagnostik, Therapie und Nachsorge des Lungenkarzinoms Langversion 2.01. https://www.leitlinienprogramm-onkologie.de/leitlinien/lungenkarzinom/;. Zugegriffen: 27. Juli 2022 (AWMF-Registernummer: 020/007OL)

  16. Li R, Yu L, Lin S et al (2016) Involved field radiotherapy (IFRT) versus elective nodal irradiation (ENI) for locally advanced non-small cell lung cancer: a meta-analysis of incidence of elective nodal failure (ENF). Radiat Oncol 11:124

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liao Z, Lee JJ, Komaki R et al (2018) Bayesian adaptive randomization trial of passive scattering proton therapy and intensity-modulated photon radiotherapy for locally advanced non-small-cell lung cancer. J Clin Oncol 36:1813–1822

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mao W, Riess J, Kim J et al (2022) Evaluation of auto-contouring and dose distributions for online adaptive radiation therapy of patients with locally advanced lung cancers. Pract Radiat Oncol 12:e329–e338

    Article  PubMed  Google Scholar 

  19. Meyers SM, Kisling K, Atwood TF, Ray X (2022) A standardized workflow for respiratory-gated motion management decision-making. J Appl Clin Med Phys. https://doi.org/10.1002/acm2.13705

    Article  PubMed  PubMed Central  Google Scholar 

  20. Movsas B, Hu C, Sloan J et al (2016) Quality of life analysis of a radiation dose-escalation study of patients with non-small-cell lung cancer: a secondary analysis of the radiation therapy oncology group 0617 randomized clinical trial. JAMA Oncol 2:359–367

    Article  PubMed  PubMed Central  Google Scholar 

  21. National Comprehensive Cancer Network (2022) NCCN clinical practice guidelines in oncology (NCCN guidelines®) for non-small cell lung cancer V.03.2022

    Google Scholar 

  22. Nestle U, De Ruysscher D, Ricardi U et al (2018) ESTRO ACROP guidelines for target volume definition in the treatment of locally advanced non-small cell lung cancer. Radiother Oncol 127:1–5

    Article  PubMed  Google Scholar 

  23. Nestle U, Schimek-Jasch T, Kremp S et al (2020) PET-Plan study group. Imaging-based target volume reduction in chemoradiotherapy for locally advanced non-small-cell lung cancer (PET-Plan): a multicentre, open-label, randomised, controlled trial. Lancet Oncol 21:581–592

    Article  CAS  PubMed  Google Scholar 

  24. Peters S, Felip E, Dafni U et al (2021) Progression-free and overall survival for concurrent nivolumab with standard concurrent chemoradiotherapy in locally advanced stage IIIA‑B NSCLC: results from the European thoracic oncology platform NICOLAS phase II trial (European thoracic oncology platform 6–14). J Thorac Oncol 16:278–288

    Article  CAS  PubMed  Google Scholar 

  25. Reck M, Hyeong Lee K, Frost N et al (2022) Two-year update from KEYNOTE-799: pembrolizumab plus concurrent chemoradiation therapy (cCRT) for unresectable, locally advanced, stage III NSCLC. J Clin Oncol 40(16):8508–8508

    Article  Google Scholar 

  26. Sculier JP, Lafitte JJ, Berghmans T et al (2018) A phase III randomised study comparing concomitant radiochemotherapy with cisplatin and docetaxel as induction versus consolidation treatment in patients with locally advanced unresectable non-small cell lung cancer. Cancer Treat Res 117:32–37

    Google Scholar 

  27. Senan S, Brade A, Wang LH et al (2016) PROCLAIM: randomized phase III trial of pemetrexed-cisplatin or etoposide-cisplatin plus thoracic radiation therapy followed by consolidation chemotherapy in locally advanced nonsquamous non-small-cell lung cancer. J Clin Oncol 34:953–962

    Article  CAS  PubMed  Google Scholar 

  28. Spigel DR, Faivre-Finn C, Gray JE et al (2022) Five-year survival outcomes from the PACIFIC trial: durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. J Clin Oncol 40:1301–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wen N, Glide-Hurst C, Snyder KC et al (2018) Treatment verification and delivery. In: Cai J, Chang JY, Yin FF (Hrsg) Principles and practice of image-guided radiation therapy of lung cancer. Taylor & Francis Group, Boca Raton

    Google Scholar 

  30. Wu YL, Tsuboi M, He J, ADAURA Investigators et al (2020) Osimertinib in resected EGFR-mutated non-small-cell lung cancer. N Engl J Med 383:1711–1723

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pöttgen.

Ethics declarations

Interessenkonflikt

J. Fleckenstein gibt an, dass kein Interessenkonflikt besteht. C. Pöttgen ist als Referent für die Firmen AstraZeneca und Roche Pharma tätig. N. Reinmuth ist als Referent/Berater für die Firmen Amgen, AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Daiichi Sankyo, Hoffmann-La Roche, Lilly, Merck, MSD, Pfizer, und Takeda tätig.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleckenstein, J., Pöttgen, C. & Reinmuth, N. Moderne definitive Radiochemotherapie – State of the Art-Umsetzung und neue Konsolidierungsstrategien. Z Pneumologie 20, 267–272 (2023). https://doi.org/10.1007/s10405-023-00522-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10405-023-00522-z

Schlüsselwörter

Keywords

Navigation