Skip to main content
Log in

Experimental study on developing in-situ hierarchical micro/nanocrystals for improved capillary wicking

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The superior capillary wicking capability of hierarchical surfaces determined by the capillary pressure and viscous resistance plays a critical role in developing the high-efficient thermal management devices. In this study, a novel chemical oxide method for fabricating the in situ micro/nanocrystal structures on the copper substrates with prominently improved capillary wicking capability is proposed. Single-scaled and hierarchical structures can be fabricated, and the capillary wicking capability of the hierarchical structures exhibits the much higher wicking coefficient than that of the single-scaled structures. The wicking coefficient on the nanosheet and micro-flowers hierarchical surface was measured as 3.77 mm/s0.5, which indicates a maximum improvement of 146.4% compared to single-scaled structures. This hierarchical structure can provide two-tier pores for strengthening the capillary pressure driven by the nanoscale pores and reducing the viscous resistance driven by the micropores. It is worth noting that the ultrafast wicking on the hierarchical surface is useful in creating extremely effective thermal management systems and advanced heat exchangers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data will be available on request.

Abbreviations

l :

Wcking distance, [mm]

P cap :

Capillary pressure

K :

Permeability

t t :

Time, [s]

W :

Wicking coefficient, [mm/s0.5]

R f :

Dynamic liquid wicking front, [mm]

R c :

Contact line, [mm]

R t :

Inner diameter, [mm]

V initial :

Initial volume of water, [μL]

H initial :

Initial height of water, [mm]

F cap :

Capillary force

F friction :

Frictional force

R geometry :

Geometry curvature of the liquid

A area :

Cross-sectional area

C 1 :

Empirical constant

C 2 :

Empirical constant

B 1 :

Empirical constant

P :

Perimeter of dynamic wicking liquid front

NG:

Nanograss

NGMP:

Nanograss and micro-petals

NGMF:

Nanograss and micro-flowers

NSMF:

Nanosheets and micro-flowers

Σ :

Surface tension, [N/m]

θ :

Contact angle

μ :

Viscosity

δ :

Thickness

ε :

Porosity

References

  • Achille C, Parra-Cabrera C, Dochy R, Ordutowski H, Piovesan A, Piron P, Van Looy L, Kushwaha S, Reynaerts D, Verboven P, Nicolai B, Lammertyn J, Spasic D, Ameloot R (2021) 3D printing of monolithic capillarity-driven microfluidic devices for diagnostics. Adv Mater 33(25):e2008712

    Article  Google Scholar 

  • Ahn HS, Park G, Kim J, Kim MH (2012) Wicking and spreading of water droplets on nanotubes. Langmuir 28(5):2614–2619

    Article  Google Scholar 

  • Alhosani MH, Zhang T (2017) Dynamics of microscale liquid propagation in micropillar arrays. Langmuir 33(26):6620–6629

    Article  Google Scholar 

  • Alhosani MH, Li H, Alketbi AS, Guan Q, Aili A, Zhang T (2021) Enhanced liquid propagation and wicking along nanostructured porous surfaces. Adv Eng Mater 23(7):21001

    Article  Google Scholar 

  • Andrews HG, Eccles EA, Schofield WC, Badyal JP (2011) Three-dimensional hierarchical structures for fog harvesting. Langmuir 27(7):3798–3802

    Article  Google Scholar 

  • Bamorovat Abadi G, Bahrami M (2020) A general form of capillary rise equation in micro-grooves. Sci Rep 10(1):19709

    Article  Google Scholar 

  • Chen X, Chen J, Ouyang X, Song Y, Xu R, Jiang P (2017) Water droplet spreading and wicking on nanostructured surfaces. Langmuir 33(27):6701–6707

    Article  Google Scholar 

  • Chen G, Jia M, Zhang S, Tang Y, Wan Z (2020) Pool boiling enhancement of novel interconnected microchannels with reentrant cavities for high-power electronics cooling. Inter J Heat Mass Transfer. 156:6654

    Article  Google Scholar 

  • Chen G, Fan D, Zhang S, Sun Y, Zhong G, Wang Z, Wan Z, Tang Y (2021) Wicking capability evaluation of multilayer composite micromesh wicks for ultrathin two-phase heat transfer devices. Renew Energy 163:921–929

    Article  Google Scholar 

  • Chun J, Xu C, Zhang Y, Li Q, Wen R, Ma X (2021) fast capillary wicking on hierarchical copper nanowired surfaces with interconnected v-grooves: implications for thermal management. ACS Applied Nano Mater 4(5):5360–5371

    Article  Google Scholar 

  • Dai H, Ding R, Li M, Huang J, Li Y, Trevor M (2014) Ordering Ag nanowire arrays by spontaneous spreading of volatile droplet on solid surface. Sci Rep 4:6742

    Article  Google Scholar 

  • Dai B, Li K, Shi L, Wan X, Liu X, Zhang F, Jiang L, Wang S (2019) Bioinspired janus textile with conical micropores for human body moisture and thermal management. Adv Mater 31(41):e1904113

    Article  Google Scholar 

  • Fan JG, Zhao YP (2007) Spreading of a water droplet on a vertically aligned Si nanorod array surface. Appl Phys Lett 90(1):2331

    Article  Google Scholar 

  • Gimenez R, Soler-Illia G, Berli CLA, Bellino MG (2020) Nanopore-enhanced drop evaporation: when cooler or more saline water droplets evaporate faster. ACS Nano 14(3):2702–2708

    Article  Google Scholar 

  • Goh JYH, Hung YM, Tan MK (2020) Extraordinarily enhanced evaporation of water droplets on graphene-nanostructured coated surfaces. Inter J Heat Mass Transfer. 163:776

    Article  Google Scholar 

  • Gong L, Xu Y-P, Ding B, Zhang Z-H, Huang Z-Q (2020) Thermal management and structural parameters optimization of MCM-BGA 3D package model. Inter J Thermal Sci 147:10620

    Article  Google Scholar 

  • Gou X, Guo Z (2020) Hybrid hydrophilic-hydrophobic CuO@TiO2-coated copper mesh for efficient water harvesting. Langmuir 36(1):64–73

    Article  Google Scholar 

  • Hu Y, Fang Z, Wan X, Ma X, Wang S, Fan S, Dong M, Ye Z, Peng X (2022) Carbon nanotubes decorated hollow metal–organic frameworks for efficient solar-driven atmospheric water harvesting. Chem Eng J 430:13308

    Article  Google Scholar 

  • Huang Y, Chen Q, Wang R (2018) Visualization study on capillary-spreading behavior of liquid droplet in vertically aligned carbon nanotube array. Int J Heat Mass Transf 120:1055–1064

    Article  Google Scholar 

  • Im Y, Dietz C, Lee SS, Joshi Y (2012) Flower-Like CuO nanostructures for enhanced boiling. Nano Microscal Thermo Eng 16(3):145–153

    Article  Google Scholar 

  • Jarrett H, Wade M, Kraai J, Rorrer GL, Wang AX, Tan H (2020) Self-powered microfluidic pump using evaporation from diatom biosilica thin films. Microfluid Nanofluid. https://doi.org/10.1007/s10404-020-02343-5

    Article  Google Scholar 

  • Khan MS, Kannangara D, Garnier G, Shen W (2011) Effect of liquid droplet impact velocity on liquid wicking kinetics in surface V-grooves. Chem Eng Sci 66(23):6120–6127

    Article  Google Scholar 

  • Kim SJ, Moon M-W, Lee K-R, Lee D-Y, Chang YS, Kim H-Y (2011) Liquid spreading on superhydrophilic micropillar arrays. J Fluid Mech 680:477–487

    Article  MATH  Google Scholar 

  • Kim SJ, Kim J, Moon M-W, Lee K-R, Kim H-Y (2013) Experimental study of drop spreading on textured superhydrophilic surfaces. Phys Fluids 25(9):09211

    Article  Google Scholar 

  • Kim BS, Lee H, Shin S, Choi G, Cho HH (2014) Interfacial wicking dynamics and its impact on critical heat flux of boiling heat transfer. Appl Phys Lett 105(19):3321

    Article  Google Scholar 

  • Kim DE, Park SC, Yu DI, Kim MH, Ahn HS (2015) Enhanced critical heat flux by capillary driven liquid flow on the well-designed surface. Applied Phys Lett 107(2):03293

    Article  Google Scholar 

  • Kim H, Ahn HS, Kwak HJ, Kim MH, Kim DE (2016) Boiling crisis controlled by capillary pumping and viscous friction: Liquid penetration length and dry spot diameter. Appl Phys Lett 109(24):9876

    Article  Google Scholar 

  • Kim J, Moon M-W, Kim H-Y (2020) Capillary rise in superhydrophilic rough channels. Phys Fluid 32(3):0321

    Article  Google Scholar 

  • Kriel FH, Sedev R, Priest C (2014) Capillary filling of nanoscale channels and surface structure. Isr J Chem 54(12):1519–1532

    Article  Google Scholar 

  • Krishnan SR, Bal J, Putnam SA (2019) A simple analytic model for predicting the wicking velocity in micropillar arrays. Sci Rep 9(1):20074

    Article  Google Scholar 

  • Lee J, Suh Y, Dubey PP, Barako MT, Won Y (2019) Capillary wicking in hierarchically textured copper nanowire arrays. ACS Appl Mater Interfaces 11(1):1546–1554

    Article  Google Scholar 

  • Li W, Joshi Y (2020) Capillary-assisted evaporation/Boiling in PDMS microchannel integrated with wicking microstructures. Langmuir 36(41):12143–12149

    Article  Google Scholar 

  • Li C, Liu Y, Gao C, Li X, Xing Y, Zheng Y (2019) Fog harvesting of a bioinspired nanocone-decorated 3D fiber network. ACS Appl Mater Interf 11(4):4507–4513

    Article  Google Scholar 

  • Li J, Zhu G, Kang D, Fu W, Zhao Y, Miljkovic N (2020) Endoscopic visualization of contact line dynamics during pool boiling on capillary-activated copper microchannels. Adv Fun Mater. 31(4):20062

    Google Scholar 

  • Li J, Zhao Y, Ma J, Fu W, Yan X, Rabbi KF, Miljkovic N (2021) Superior antidegeneration hierarchical nanoengineered wicking surfaces for boiling enhancement. Adv Fun Mater 32(8):21088

    Google Scholar 

  • Li X, Wang S, Wen R, Ma X, Yang R (2022) Liquid film boiling enabled ultra-high conductance and high flux heat spreaders. Cell Report Phys Sci 3(3):100746

    Article  Google Scholar 

  • Liu R, Liu Z (2021) Self-pumping ultra-thin film evaporation on CNT-embedded silicon nitride nanopore membrane. Nano Res 15(3):1725–1729

    Article  Google Scholar 

  • Ma B, Chi J, Xu C, Ni Y, Zhao C, Liu H (2020) Wearable capillary microfluidics for continuous perspiration sensing. Talanta 212:120786

    Article  Google Scholar 

  • Mai TT, Lai CQ, Zheng H, Balasubramanian K, Leong KC, Lee PS, Lee C, Choi WK (2012) Dynamics of wicking in silicon nanopillars fabricated with interference lithography and metal-assisted chemical etching. Langmuir 28(31):11465–11471

    Article  Google Scholar 

  • Moghadasi H, Saffari H (2021) Experimental study of nucleate pool boiling heat transfer improvement utilizing micro/nanoparticles porous coating on copper surfaces. Inter J Mech Sci. 196:887

    Article  Google Scholar 

  • Nguyen TB, Liu D, Kayes MI, Wang B, Rashin N, Leu PW, Tran T (2018) Critical heat flux enhancement in pool boiling through increased rewetting on nanopillar array surfaces. Sci Rep 8(1):4815

    Article  Google Scholar 

  • Park C, Kim T, Kim Y-I, Aldalbahi A, RafeHatshan M, An S, Yoon SS (2021) Pool boiling enhancement using hierarchically structured ZnO nanowires grown via electrospraying and chemical bath deposition. Appl Ther Eng 187:1165

    Article  Google Scholar 

  • Piovesan A, Van De Looverbosch T, Verboven P, Achille C, Parra Cabrera C, Boller E, Cheng Y, Ameloot R (2020) Nicolai 4D synchrotron microtomography and pore-network modelling for direct in situ capillary flow visualization in 3D printed microfluidic channels. Lab Chip 20(13):2403–2411

    Article  Google Scholar 

  • Poudel S, Zou A, Maroo SC (2019) Wicking in cross-connected buried nanochannels. J Phys Chem C 123(38):23529–23534

    Article  Google Scholar 

  • Poudel S, Zou A, Maroo SC (2020) Evaporation dynamics in buried nanochannels with micropores. Langmuir 36(27):7801–7807

    Article  Google Scholar 

  • Poudel S, Zou A, Maroo SC (2021) Droplet evaporation on porous nanochannels for high heat flux dissipation. ACS Appl Mater Interfaces 13(1):1853–1860

    Article  Google Scholar 

  • Qiu X, Yang H, Dejam M, Tan SP, Adidharma H (2021) Experiments on the capillary condensation/evaporation hysteresis of pure fluids and binary mixtures in cylindrical nanopores. J Phys Chem C 125(10):5802–5815

    Article  Google Scholar 

  • Ravi S, Horner D, Moghaddam S (2013) A novel method for characterization of liquid transport through micro-wicking arrays. Microfluid Nanofluid 17(2):349–357

    Article  Google Scholar 

  • Ravi S, Dharmarajan R, Moghaddam S (2015) Measurement of capillary radius and contact angle within porous media. Langmuir 31(47):12954–12959

    Article  Google Scholar 

  • Rokoni A, Kim DO, Sun Y (2019) Micropattern-controlled wicking enhancement in hierarchical micro/nanostructures. Soft Matter 15(32):6518–6529

    Article  Google Scholar 

  • Shim DI, Choi G, Lee N, Kim T, Kim BS, Cho HH (2017) Enhancement of pool boiling heat transfer using aligned silicon nanowire arrays. ACS Appl Mater Interfaces 9(20):17595–17602

    Article  Google Scholar 

  • Wang Z, Zhao J, Bagal A, Dandley EC, Oldham CJ, Fang T, Parsons GN, Chang CH (2016) Wicking enhancement in three-dimensional hierarchical nanostructures. Langmuir 32(32):8029–8033

    Article  Google Scholar 

  • Wang R, Jakhar K, Antao DS (2019) Unified modeling framework for thin-film evaporation from micropillar arrays capturing local interfacial effects. Langmuir 35(40):12927–12935

    Article  Google Scholar 

  • Wang Y, Lin Y, Yang G, Wu J (2021) Flow physics of wicking into woven screens with hybrid micro-/nanoporous structures. Langmuir 37(7):2289–2297

    Article  Google Scholar 

  • Wemp CK, Carey VP (2019) Heat transport for evaporating droplets on superhydrophilic, thin, nanoporous layers. Int J Heat Mass Transf 132:34–51

    Article  Google Scholar 

  • Wen R, Ma X, Lee Y-C, Yang R (2018a) Liquid-vapor phase-change heat transfer on functionalized nanowired surfaces and beyond. Joule 2(11):2307–2347

    Article  Google Scholar 

  • Wen R, Xu S, Zhao D, Yang L, Ma X, Liu W, Lee Y-C, Yang R (2018b) Sustaining enhanced condensation on hierarchical mesh-covered surfaces. Natl Sci Rev 5(6):878–887

    Article  Google Scholar 

  • Wen R, Xu S, Lee Y-C, Yang R (2018c) Capillary-driven liquid film boiling heat transfer on hybrid mesh wicking structures. Nano Energy 51:373–382

    Article  Google Scholar 

  • Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994

    Article  Google Scholar 

  • Xiao R, Wang EN (2011) Microscale liquid dynamics and the effect on macroscale propagation in pillar arrays. Langmuir 27(17):10360–10364

    Article  Google Scholar 

  • Xiao R, Chu K-H, Wang EN (2009) Multilayer liquid spreading on superhydrophilic nanostructured surfaces. Appl Phy Lett. 94(19):556

    Article  Google Scholar 

  • Xiao R, Enright R, Wang EN (2010) Prediction and optimization of liquid propagation in micropillar arrays. Langmuir 26(19):15070–15075

    Article  Google Scholar 

  • Xie S, Jiang M, Kong H, Tong Q, Zhao J (2021) An experimental investigation on the pool boiling of multi-orientated hierarchical structured surfaces. Inter J Heat Mass Transfer. 164:1205

    Article  Google Scholar 

  • Xu J, Li T, Chao J, Wu S, Yan T, Li W, Cao B, Wang R (2020) Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by hygroscopic salt. Angew Chem Int Ed Engl 59(13):5202–5210

    Article  Google Scholar 

  • Ye Y, Zhao Y, Cheng J, Li M, Huang C (2018) Design, fabrication and characterisation of Si-based capillary-driven microfluidic devices. Micro Nano Letters 13(12):1682–1687

    Article  Google Scholar 

  • Zhang H, Guo Z (2022) Near-junction microfluidic cooling for GaN HEMT with capped diamond heat spreader. Inter J Heat Mass Transfer. 186:1224

    Article  Google Scholar 

  • Zhang C, Yu F, Li X, Chen Y (2018) Gravity–capillary evaporation regimes in microgrooves. AIChE J 65(3):1119–1125

    Article  Google Scholar 

  • Zhang Y, Ma X, Zhu Z, Duan L, Wei J (2021) Critical heat flux prediction model of pool boiling heat transfer on the micro-pillar surfaces. Case Studies in Ther Eng. 28:1016

    Google Scholar 

  • Zheng D, Choi CH, Sun G, Zhao X (2020) Superwicking on nanoporous micropillared surfaces. ACS Appl Mater Interfaces 12(27):30925–30931

    Article  Google Scholar 

  • Zuruzi AS, Gardner HC, Monkowski AJ, MacDonald NC (2013) Tailored nanostructured titania integrated on titanium micropillars with outstanding wicking properties. Lab Chip 13(12):2414–2418

    Article  Google Scholar 

Download references

Acknowledgements

This research is financially supported by National Key Research and Development Program (No.2022YFE0198800), and National Natural Science Foundation of China (No. 52076139).

Author information

Authors and Affiliations

Authors

Contributions

Xiao Yuan conducted conceptualization, cethodology, validation, formal analysis, investigation, resources, data curation, writing – original draft, visualization. Yanping Du conducted writing – review & editing, supervision, project administration, funding acquisition. Guochao Fei, Ruijie Yang, Chao Wang, Qian Xu and Chuan Li conducted validation, investigation, data curation.

Corresponding author

Correspondence to Yanping Du.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Du, Y., Fei, G. et al. Experimental study on developing in-situ hierarchical micro/nanocrystals for improved capillary wicking. Microfluid Nanofluid 27, 31 (2023). https://doi.org/10.1007/s10404-023-02641-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-023-02641-8

Keywords

Navigation