Skip to main content
Log in

Structure of subsonic plane microjets

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Results of experiments aimed at studying subsonic microjets escaping from a plane nozzle are reported. The Reynolds numbers based on the nozzle height and mean flow velocity at the nozzle exit are varied from 27 to 139, whereas the nozzle size is fixed at 83.3 × 3823 µm. The test gas is air at room temperature. The distributions of velocity and velocity fluctuations along the jet axis and in the lateral and transverse directions are determined. The fact of the laminar–turbulent transition in the jet is detected. The data obtained are compared with theoretical predictions for laminar plane jets. The experimental and theoretical data are found to be in good agreement at the laminar segment of the microjet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

AR:

Aspect ratio w/h

h:

Nozzle height

K:

Kinematic impulse

Ku :

Jet decay rate

Ky :

Jet spreading rate

Re:

Jet Reynolds number

U:

Velocity in the x direction

Uav :

Mean velocity at the nozzle exit

UC :

Centerline velocity in the x direction

UC0 :

The maximum jet velocity at the nozzle exit

u′:

Fluctuating velocity component in the x direction

w:

Nozzle width

x0 :

Distance between the virtual source of the theoretical jet and the nozzle exit of the real jet

x, y, z:

Streamwise (x), lateral (y) and transverse (z) coordinates

y0.5, z0.5 :

Jet half-width, i.e., the distance at which the velocity value equal to one-half of the maximum value

\(\nu\) :

Kinematic viscosity

References

  • Andrade EN, Da C (1939) The velocity distribution in a liquid-into-liquid jet. Part 2: the plane jet. Proc Phys Sос 5(1):784–793

    Article  Google Scholar 

  • Aniskin VM, Bountin DA, Maslov AA, Mironov SG, Tsyryulnikov IS (2012) Investigation of stability of a subsonic gas microjet,Zh. Tekh Fiz 82(2):17–23

    Google Scholar 

  • Aniskin VM, Mironov SG, Maslov AA (2013) Investigation of the structure of supersonic nitrogen microjets. Microfluid Nanofluid 14(3):605–661

    Article  Google Scholar 

  • Aniskin VM, Lemanov VV, Maslov NA, Mukhin KA, Terekhov VI, Sharov KA (2015) Experimental study of subsonic flow plane mini- and microjets of air. Tech Phys Lett 41:26–31

    Google Scholar 

  • Bashir J, Uberoi MS (1975) Experiments on turbulent structure and heat transfer in a two dimensional jet. Phys Fluids 18(4):405–410

    Article  Google Scholar 

  • Bickley WG (1937) LXXIII. The plane jet. Lond Edinb Dublin Philos Mag J Sci 23(156):727–773

    Article  Google Scholar 

  • Chanaud RC, Powell A (1962) Experiments concerning the sound-sensitive jet. J Acoust Soc Am 34(7):907–915

    Article  Google Scholar 

  • Deo RC (2013) The role of nozzle-exit conditions on the flow field of a plane jet. Int J Mech Aerosp Ind Mechatron Eng 7(12):1454–1463

    Google Scholar 

  • Deo RC, Mi J, Nathan GJ (2007a) The influence of nozzle-exit geometric profile on statistical properties of a turbulent plane jet. Exp Thermal Fluid Sci 32:545–559

    Article  Google Scholar 

  • Deo RC, Mi J, Nathan GJ (2007b) The influence of nozzle aspect ratio on plane jets. Exp Thermal Fluid Sci 31:825–838

    Article  Google Scholar 

  • Deo RC, Nathan GJ, Mi J (2007c) Comparison of turbulent jets issuing from rectangular nozzles with and without sidewalls. Exp Thermal Fluid Sci 32:596–606

    Article  Google Scholar 

  • Gau C, Shen CH, Wang ZB (2009) Peculiar phenomenon of micro-free-jet flow. Phys Fluids 21:092001

    Article  Google Scholar 

  • Gau C, Shen CH, Chang CJ (2013) Flow and heat transfer of a micro jet impinging on a heated chip: part I—micro free and impinging jet flow. Nanoscale Microscale Thermophys Eng 17:50–68

    Article  Google Scholar 

  • Gutmark E, Wygnanski I (1976) The planar turbulent jet. J Fluid Mech 73(3):465–495

    Article  Google Scholar 

  • Hadrys D, Piwnikb J (2014) Welding with microjet cooling as a method of improving, the plastic properties of welds. J Eng Phys Thermophys 87(5):1170–1176

    Article  Google Scholar 

  • Hill WG, Jenkins RC, Gilbert BL (1976) Effects of the initial boundary layer state on turbulent jet mixing. AIAA J 14:1513–1514

    Article  Google Scholar 

  • Hitchman GJ, Strong AB, Slawson PR, Ray G (1990) Turbulent planar jet with and without confining walls. AIAA J 28(10):1699–1700

    Article  Google Scholar 

  • Hussain AKMF, Clark AR (1977) Upstream influence on the near field of a planar turbulent jet. Phys Fluids 20(9):1416–1426

    Article  Google Scholar 

  • Kozlov VV, Grek GR, Litvinenko YuA (2016) Visualization of conventional and combusting subsonic jet instabilities. Springer International Publishing, Dordrecht, p 126

    Book  Google Scholar 

  • Krivokorytov MS, Golub VV, Moralev IA (2013) Development of instability in gas microjets under an acoustic action. Pisma Zh Tekh Fiz 39(18):38–44

    Google Scholar 

  • Krothapalli A, Baganoff D, Karamcheti K (1981) On the mixing of rectangular jet. J Fluid Mech 107:201–220

    Article  Google Scholar 

  • Lemanov VV, Terekhov VI, Sharov KA, Shumeiko AA (2013) Experimental study of submerged jets at low Reynolds numbers. Pisma Zh Tekh Fiz 39(9):34–40

    Google Scholar 

  • Mi J, Deo RC, Nathan GJ (2005) Characterization of turbulent jets from high-aspect-ratio rectangular nozzles. Phys Fluids 17:068102

    Article  Google Scholar 

  • Miller DR, Comings EW (1957) Static pressure distribution in a free turbulent jet. J Fluid Mech 3:1–16

    Article  Google Scholar 

  • Namer I, Ötügen MV (1988) Velocity measurements in a planar turbulent air jet at moderate Reynolds numbers. Exp Fluids 6:387–399

    Article  Google Scholar 

  • Peacock T, Bradley E, Hertzberg J, Lee YC (2004) Forcing a planar jet flow using MEMS. Exp Fluids 37:22–28

    Article  Google Scholar 

  • Quinn WR, Pollard A (1985) Mean velocity and static pressure distributions in a three-dimensional turbulent free jet. AIAA J 23(6):971–973

    Article  Google Scholar 

  • Rusowicza A, Leszczynski MJ, Grzebieleca A, Laskowski R (2015) Experimental investigation of single-phase microjet cooling of microelectronics. Arch Thermodyn 36(3):139–147

    Article  Google Scholar 

  • Sato H (1960) The stability and transition of a two-dimensional jet. J Fluid Mech 7:53–80

    Article  MathSciNet  Google Scholar 

  • Satо H, Sakao F (1964) An experimental investigation of the instability of a two-dimensional jet at low Reynolds numbers. J Fluid Mech 20(2):337–352

    Article  Google Scholar 

  • Schlichting H (1979) Boundary-layer theory, 7th edn. McGraw-Hill, Inc., New York, p 419

    Google Scholar 

  • Sforza PM, Stasi W (1979) Heated three-dimensional turbulent jets. J Heat Transf 10(1):353–358

    Article  Google Scholar 

  • Sforza PM, Steiger MH, Trentacoste N (1966) Studies on three-dimensional viscous jet. AIAA J 4(5):800–806

    Article  Google Scholar 

  • Tabeling P (2005) Introduction to microfluids. Oxford University Press, Oxford

    Google Scholar 

  • Xiaobing L, Wei C, Renxia S, Sheng L (2008) Experimental and numerical investigation of a microjet-based cooling system for high power LEDs. Heat Transf Eng 29(9):774–781

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation (Grant no. 17-19-01157, methodical part of this work) and RFBR (Project no. 18-31-00272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Aniskin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aniskin, V.M., Maslov, A.A. & Mukhin, K.A. Structure of subsonic plane microjets. Microfluid Nanofluid 23, 57 (2019). https://doi.org/10.1007/s10404-019-2223-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-019-2223-0

Navigation