Skip to main content
Log in

Application of polydopamine in biomedical microfluidic devices

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Polydopamine (PDA) is a bioinspired material with tremendous potential for applications involving surface modifications. By simply immersing the substrate in the dopamine monomer solution, we are able to apply a hydrophilic and biofunctional PDA coating that adheres strongly to any surface, including (super)hydrophobic surface, with unprecedented ease. Using PDA, almost any materials can be immobilized on the surface in a single step by mixing them with the dopamine monomer solution. This review provides a comprehensive coverage of the applications of PDA in the device fabrication, surface modification, and biofunctionalization of biomedical microfluidic devices. While discussing the advantages and limitations of PDA, we pay special attention to its unique properties that specifically benefit biomedical microfluidic devices. We also discuss other potential applications of PDA beyond the current development. Through this review, we hope to promote PDA and encourage a broader adoption of PDA by the microfluidic community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Insets adopted and modified from Refs. (Liang et al. 2011; Wood et al. 2013), (Kim et al. 2013b; Shi et al. 2014; You et al. 2012), (Feng et al. 2015) with the permission from American Chemical Society, Royal Society of Chemistry, Elsevier, Wiley

Fig. 2

Adapted from Ref. (Shi et al. 2014) with the permission from American Chemical Society

Fig. 3

Adopted from Ref. (You et al. 2012) with the permission from Wiley

Fig. 4

Adopted from Ref. (Wood et al. 2013) with the permission from American Chemical Society

Fig. 5

Adopted from Ref. (Feng et al. 2015) with the permission from Royal Society of Chemistry

Fig. 6

Adopted from Ref. (Shi et al. 2014) with the permission from American Chemical Society

Fig. 7

Adopted from Ref. (Sileika et al. 2011) with the permission from American Chemical Society

Similar content being viewed by others

References

  • Ball V (2014) Physicochemical perspective on “polydopamine” and “poly(catecholamine)” films for their applications in biomaterial coatings. Biointerphases 9:030801

    Article  Google Scholar 

  • Beckwith KM, Sikorski P (2013) Patterned cell arrays and patterned co-cultures on polydopamine-modified poly(vinyl alcohol) hydrogels. Biofabrication 5:045009

    Article  Google Scholar 

  • Bi Y, Zhou H, Jia H, Wei P (2017) Polydopamine-mediated preparation of an enzyme-immobilized microreactor for the rapid production of wax ester. RSC Adv 7:12283–12291

    Article  Google Scholar 

  • Bunka DHJ, Stockley PG (2006) Aptamers come of age: at last. Nat Rev Microbiol 4:588–596

    Article  Google Scholar 

  • Chen X, L-l Zhang, J-h Sun, Li H, D-f Cui (2014) A facile and simple high-performance polydimethylsiloxane casting based on self-polymerization dopamine. J Micromech Microeng 24:095006

    Article  Google Scholar 

  • Cheng G, Zheng SY (2014) Construction of a high-performance magnetic enzyme nanosystem for rapid tryptic digestion. Sci Rep 4:6947

    Article  Google Scholar 

  • Cheng G, Hao SJ, Yu X, Zheng SY (2015) Nanostructured microfluidic digestion system for rapid high-performance proteolysis. Lab Chip 15:650–654

    Article  Google Scholar 

  • Chien HW, Tsai WB (2012) Fabrication of tunable micropatterned substrates for cell patterning via microcontact printing of polydopamine with poly(ethylene imine)-grafted copolymers. Acta Biomater 8:3678–3686

    Article  Google Scholar 

  • Chien HW, Kuo WH, Wang MJ, Tsai SW, Tsai WB (2012) Tunable micropatterned substrates based on poly(dopamine) deposition via microcontact printing. Langmuir 28:5775–5782

    Article  Google Scholar 

  • Chiou C-H, Shin DJ, Zhang Y, Wang T-H (2013) Topography-assisted electromagnetic platform for blood-to-PCR in a droplet. Biosens Bioelectron 50:91–99

    Article  Google Scholar 

  • Choi K, Ng AHC, Fobel R, Wheeler AR (2012) Digital microfluidics. Annu Rev Anal Chem 5:413–440

    Article  Google Scholar 

  • Chuah YJ, Koh YT, Lim K, Menon NV, Wu Y, Kang Y (2015a) Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency. Sci Rep 5:18162

    Article  Google Scholar 

  • Chuah YJ, Kuddannaya S, Lee MH, Zhang Y, Kang Y (2015b) The effects of poly(dimethylsiloxane) surface silanization on the mesenchymal stem cell fate. Biomater Sci 3:383–390

    Article  Google Scholar 

  • Della Vecchia NF, Avolio R, Alfè M, Errico ME, Napolitano A, d’Ischia M (2013) Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point. Adv Funct Mater 23:1331–1340

    Article  Google Scholar 

  • Dertinger SKW, Chiu DT, Jeon NL, Whitesides GM (2001) Generation of gradients having complex shapes using microfluidic networks. Anal Chem 73:1240–1246

    Article  Google Scholar 

  • d’Ischia M, Napolitano A, Pezzella A, Meredith P, Sarna T (2009) Chemical and structural diversity in eumelanins: unexplored bio-optoelectronic materials. Angew Chem 48:3914–3921

    Article  Google Scholar 

  • d’Ischia M, Napolitano A, Ball V, Chen CT, Buehler MJ (2014) Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy. Acc Chem Res 47:3541–3550

    Article  Google Scholar 

  • Dong Z, Zhang F, Wang D, Liu X, Jin J (2015) Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal. J Solid State Chem 224:88–93

    Article  Google Scholar 

  • Dreyer DR, Miller DJ, Freeman BD, Paul DR, Bielawski CW (2013) Perspectives on poly(dopamine). Chem Sci 4:3796–3802

    Article  Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  Google Scholar 

  • Eteshola E, Leckband D (2001) Development and characterization of an ELISA assay in PDMS microfluidic channels. Sens Actuators B Chem 72:129–133

    Article  Google Scholar 

  • Fan D, Wu C, Wang K, Gu X, Liu Y, Wang E (2016) A polydopamine nanosphere based highly sensitive and selective aptamer cytosensor with enzyme amplification. Chem Commun 52:406–409

    Article  Google Scholar 

  • Feng H, Zhang Q, Ma H, Zheng B (2015) An ultralow background substrate for protein microarray technology. Analyst 140:5627–5633

    Article  Google Scholar 

  • Fuard D, Tzvetkova-Chevolleau T, Decossas S, Tracqui P, Schiavone P (2008) Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility. Microelectron Eng 85:1289–1293

    Article  Google Scholar 

  • Gao H, Sun Y, Zhou J, Xu R, Duan H (2013) Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl Mater Interfaces 5:425–432

    Article  Google Scholar 

  • Gomez FA (2008) Biological applications of microfluidics. Wiley, Hoboken

    Google Scholar 

  • Hillborg H, Ankner JF, Gedde UW, Smith GD, Yasuda HK, Wikström K (2000) Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques. Polymer 41:6851–6863

    Article  Google Scholar 

  • Ho CC, Ding SJ (2013) The pH-controlled nanoparticles size of polydopamine for anti-cancer drug delivery. J Mater Sci 24:2381–2390

    Google Scholar 

  • Ho C-C, Ding S-J (2014) Structure, properties and applications of mussel-inspired polydopamine. J Biomed Nanotechnol 10:3063–3084

    Article  Google Scholar 

  • Hong S, Kim KY, Wook HJ, Park SY, Lee KD, Lee DY, Lee H (2011) Attenuation of the in vivo toxicity of biomaterials by polydopamine surface modification. Nanomedicine 6:793–801

    Article  Google Scholar 

  • Hong D, Bae K, Hong SP, Park JH, Choi IS, Cho WK (2014) Mussel-inspired, perfluorinated polydopamine for self-cleaning coating on various substrates. Chem Commun 50:11649–11652

    Article  Google Scholar 

  • Jebrail MJ, Bartsch MS, Patel KD (2012) Digital microfluidics: a versatile tool for applications in chemistry, biology and medicine. Lab Chip 12:2452–2463

    Article  Google Scholar 

  • Jiang J, Zhu L, Zhu L, Zhu B, Xu Y (2011) Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films. Langmuir 27:14180–14187

    Article  Google Scholar 

  • Jolly P et al (2016) DNA aptamer-based sandwich microfluidic assays for dual quantification and multi-glycan profiling of cancer biomarkers. Biosens Bioelectron 79:313–319

    Article  Google Scholar 

  • Jun D-R, Choi YR, Kang RH, Choi S-W (2016) Polydimethylsiloxane fluidic device with polydopamine-coated inner channel for production of uniform droplets. Macromol Mater Eng 301:1044–1048

    Article  Google Scholar 

  • Kang SM et al (2010) One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating. Angew Chem 49:9401–9404

    Article  Google Scholar 

  • Kang SM et al (2012) One-step multipurpose surface functionalization by adhesive catecholamine. Adv Funct Mater 22:2949–2955

    Article  Google Scholar 

  • Kim BH et al (2011) Mussel-inspired block copolymer lithography for low surface energy materials of teflon, graphene, and gold. Adv Mater 23:5618–5622

    Article  Google Scholar 

  • Kim HW, McCloskey BD, Choi TH, Lee C, Kim MJ, Freeman BD, Park HB (2013a) Oxygen concentration control of dopamine-induced high uniformity surface coating chemistry. ACS Appl Mater Interfaces 5:233–238

    Article  Google Scholar 

  • Kim M, Song KH, Doh J (2013b) PDMS bonding to a bio-friendly photoresist via self-polymerized poly(dopamine) adhesive for complex protein micropatterning inside microfluidic channels. Colloids Surf B 112:134–138

    Article  Google Scholar 

  • Ku SH, Park CB (2010) Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials 31:9431–9437

    Article  Google Scholar 

  • Ku SH, Lee JS, Park CB (2010a) Spatial control of cell adhesion and patterning through mussel-inspired surface modification by polydopamine. Langmuir 26:15104–15108

    Article  Google Scholar 

  • Ku SH, Ryu J, Hong SK, Lee H, Park CB (2010b) General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials 31:2535–2541

    Article  Google Scholar 

  • Lara HH, Garza-Trevino EN, Ixtepan-Turrent L, Singh DK (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol 9:30

    Article  Google Scholar 

  • Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    Article  Google Scholar 

  • Lee H, Rho J, Messersmith PB (2009) Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 21:431–434

    Article  Google Scholar 

  • Lee M, Ku SH, Ryu J, Park CB (2010) Mussel-inspired functionalization of carbon nanotubes for hydroxyapatite mineralization. J Mater Chem 20:8848

    Article  Google Scholar 

  • Lee BP, Messersmith PB, Israelachvili JN, Waite JH (2011) Mussel-inspired adhesives and coatings. Annu Rev Mater Res 41:99–132

    Article  Google Scholar 

  • Leung JM et al (2015) Surface modification of poly(dimethylsiloxane) with a covalent antithrombin–heparin complex for the prevention of thrombosis: use of polydopamine as bonding agent. J Mater Chem 3:6032–6036

    Article  Google Scholar 

  • Liang RP, Meng XY, Liu CM, Qiu JD (2011) PDMS microchip coated with polydopamine/gold nanoparticles hybrid for efficient electrophoresis separation of amino acids. Electrophoresis 32:3331–3340

    Article  Google Scholar 

  • Liang Y et al (2017) Metal-polydopamine frameworks and their transformation to hollow metal/N-doped carbon particles. Nanoscale 9:5323–5328

    Article  Google Scholar 

  • Liebscher J et al (2013) Structure of polydopamine: a never-ending story? Langmuir 29:10539–10548

    Article  Google Scholar 

  • Ling Y, Li W, Wang B, Gan W, Zhu C, Brady MA, Wang C (2016) Epoxy resin reinforced with nanothin polydopamine-coated carbon nanotubes: a study of the interfacial polymer layer thickness. RSC Adv 6:31037–31045

    Article  Google Scholar 

  • Liu Q, Yu B, Ye W, Zhou F (2011) Highly selective uptake and release of charged molecules by pH-responsive polydopamine microcapsules. Macromol Biosci 11:1227–1234

    Article  Google Scholar 

  • Liu C-M, Liang R-P, Wang X-N, Wang J-W, Qiu J-D (2013a) A versatile polydopamine platform for facile preparation of protein stationary phase for chip-based open tubular capillary electrochromatography enantioseparation. J Chromatogr Sci 1294:145–151

    Article  Google Scholar 

  • Liu R, Guo Y, Odusote G, Qu F, Priestley RD (2013b) Core-shell Fe3O4 polydopamine nanoparticles serve multipurpose as drug carrier, catalyst support and carbon adsorbent. ACS Appl Mater Interfaces 5:9167–9171

    Article  Google Scholar 

  • Liu Y, Ai K, Liu J, Deng M, He Y, Lu L (2013c) Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater 25:1353–1359

    Article  Google Scholar 

  • Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115

    Article  Google Scholar 

  • Loget G, Wood JB, Cho K, Halpern AR, Corn RM (2013) Electrodeposition of polydopamine thin films for DNA patterning and microarrays. Anal Chem 85:9991–9995

    Article  Google Scholar 

  • Lu YW, Lin PT, Pai CS (2007) Polydimethylsiloxane (PDMS) bonding strength characterization by a line force model in blister tests. Paper presented at the transducers 2007–2007 international solid-state sensors, actuators and microsystems conference, 10–14 June 2007

  • Lynge ME, van der Westen R, Postma A, Stadler B (2011) Polydopamine-a nature-inspired polymer coating for biomedical science. Nanoscale 3:4916–4928

    Article  Google Scholar 

  • Lynge ME, Schattling P, Stadler B (2015) Recent developments in poly(dopamine)-based coatings for biomedical applications. Nanomedicine 10:2725–2742

    Article  Google Scholar 

  • Madhurakkat Perikamana SK, Lee J, Lee YB, Shin YM, Lee EJ, Mikos AG, Shin H (2015) Materials from mussel-inspired chemistry for cell and tissue engineering applications. Biomacromol 16:2541–2555

    Article  Google Scholar 

  • Mata A, Fleischman AJ, Roy S (2005) Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed Microdevices 7:281–293

    Article  Google Scholar 

  • McCloskey BD et al (2010) Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes. Polymer 51:3472–3485

    Article  Google Scholar 

  • Miller EM, Wheeler AR (2008) A digital microfluidic approach to homogeneous enzyme assays. Anal Chem 80:1614–1619

    Article  Google Scholar 

  • Ng AHC, Choi K, Luoma RP, Robinson JM, Wheeler AR (2012) Digital microfluidic magnetic separation for particle-based immunoassays. Anal Chem 84:8805–8812

    Article  Google Scholar 

  • Ng AHC, Chamberlain MD, Situ H, Lee V, Wheeler AR (2015) Digital microfluidic immunocytochemistry in single cells. Nat Commun 6:7513

    Article  Google Scholar 

  • Pipper J, Inoue M, Ng LFP, Neuzil P, Zhang Y, Novak L (2007) Catching bird flu in a droplet. Nat Med 13:1259–1263

    Article  Google Scholar 

  • Pipper J, Zhang Y, Neuzil P, Hsieh TM (2008) Clockwork PCR including sample preparation. Angew Chem 47:3900–3904

    Article  Google Scholar 

  • Postma A, Yan Y, Wang Y, Zelikin AN, Tjipto E, Caruso F (2009) Self-polymerization of dopamine as a versatile and robust technique to prepare polymer capsules. Chem Mater 21:3042–3044

    Article  Google Scholar 

  • Qiang W, Hu H, Sun L, Li H, Xu D (2015) Aptamer/polydopamine nanospheres nanocomplex for in situ molecular sensing in living cells. Anal Chem 87:12190–12196

    Article  Google Scholar 

  • Ren K, Dai W, Zhou J, Su J, Wu H (2011) Whole-teflon microfluidic chips. Proc Natl Acad Sci 108:8162–8166

    Article  Google Scholar 

  • Resnick PR (1989) The preparation and properties of a new family of amorphous fluoropolymers: teflon® AF. J Fluor Chem 45:100

    Article  Google Scholar 

  • Rivera JG, Messersmith PB (2012) Polydopamine-assisted immobilization of trypsin onto monolithic structures for protein digestion. J Sep Sci 35:1514–1520

    Article  Google Scholar 

  • Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189

    Article  Google Scholar 

  • Salazar P, Martín M, Gonzalez-Mora JL (2016) Polydopamine-modified surfaces in biosensor applications. In: Méndez-Vilas A, Solano A (eds) Polymer science: research advances, practical applications and educational aspects. Formatex Research Center, pp 385–396

  • Shah GJ, Ohta AT, Chiou EPY, Wu MC (2009) EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis. Lab Chip 9:1732–1739

    Article  Google Scholar 

  • Shamsi MH, Choi K, Ng AHC, Wheeler AR (2014) A digital microfluidic electrochemical immunoassay. Lab Chip 14:547–554

    Article  Google Scholar 

  • Shen B, Xiong B, Wu H (2015) Convenient surface functionalization of whole-teflon chips with polydopamine coating. Biomicrofluidics 9:044111

    Article  Google Scholar 

  • Shi X, Ostrovidov S, Shu Y, Liang X, Nakajima K, Wu H, Khademhosseini A (2014) Microfluidic generation of polydopamine gradients on hydrophobic surfaces. Langmuir 30:832–838

    Article  Google Scholar 

  • Shin SR et al (2016) Aptamer-based microfluidic electrochemical biosensor for monitoring cell-secreted trace cardiac biomarkers. Anal Chem 88:10019–10027

    Article  Google Scholar 

  • Sileika TS, Kim HD, Maniak P, Messersmith PB (2011) Antibacterial performance of polydopamine-modified polymer surfaces containing passive and active components. ACS Appl Mater Interfaces 3:4602–4610

    Article  Google Scholar 

  • Sun K et al (2012) Mussel-inspired anchoring for patterning cells using polydopamine. Langmuir 28:2131–2136

    Article  Google Scholar 

  • Tsai W-B, Chen W-T, Chien H-W, Kuo W-H, Wang M-J (2011) Poly(dopamine) coating of scaffolds for articular cartilage tissue engineering. Acta Biomater 7:4187–4194

    Article  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  Google Scholar 

  • Wang Y et al (2015a) An ultra hydrophilic dendrimer-modified magnetic graphene with a polydopamine coating for the selective enrichment of glycopeptides. J Mater Chem B 3:8711–8716

    Article  Google Scholar 

  • Wang Z et al (2015b) Bioadhesive microporous architectures by self-assembling polydopamine microcapsules for biomedical applications. Chem Mater 27:848–856

    Article  Google Scholar 

  • Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF (2013) Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 34:747–754

    Article  Google Scholar 

  • Weinhold M, Soubatch S, Temirov R, Rohlfing M, Jastorff B, Tautz FS, Doose C (2006) Structure and bonding of the multifunctional amino acid l-DOPA on Au(110). J Phys Chem Ref Data 110:23756–23769

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  • Wöllenstein J, Plaza JA, Cané C, Min Y, Böttner H, Tuller HL (2003) A novel single chip thin film metal oxide array. Sens Actuators B Chem 93:350–355

    Article  Google Scholar 

  • Wong T-S, Kang SH, Tang SKY, Smythe EJ, Hatton BD, Grinthal A, Aizenberg J (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447

    Article  Google Scholar 

  • Wood JB, Szyndler MW, Halpern AR, Cho K, Corn RM (2013) Fabrication of DNA microarrays on polydopamine-modified gold thin films for SPR imaging measurements. Langmuir 29:10868–10873

    Article  Google Scholar 

  • Yan Y, Zheng Z, Deng C, Li Y, Zhang X, Yang P (2013) Hydrophilic polydopamine-coated graphene for metal ion immobilization as a novel immobilized metal ion affinity chromatography platform for phosphoproteome analysis. Anal Chem 85:8483–8487

    Article  Google Scholar 

  • Yang HC, Wu QY, Wan LS, Xu ZK (2013) Polydopamine gradients by oxygen diffusion controlled autoxidation. Chem Commun 49:10522–10524

    Article  Google Scholar 

  • Ye Q, Zhou F, Liu W (2011) Bioinspired catecholic chemistry for surface modification. Chem Soc Rev 40:4244–4258

    Article  Google Scholar 

  • You I et al (2012) Polydopamine microfluidic system toward a two-dimensional, gravity-driven mixing device. Angew Chem 51:6126–6130

    Article  Google Scholar 

  • You I, Lee TG, Nam YS, Lee H (2014) Fabrication of a micro-omnifluidic device by omniphilic/omniphobic patterning on nanostructured surfaces. ACS Nano 8:9016–9024

    Article  Google Scholar 

  • Yu B, Liu J, Liu S, Zhou F (2010) Pdop layer exhibiting zwitterionicity: a simple electrochemical interface for governing ion permeability. Chem Commun 46:5900–5902

    Article  Google Scholar 

  • Zhang Y, Nguyen N-T (2017) Magnetic digital microfluidics: a review. Lab Chip 17:994–1008

    Article  Google Scholar 

  • Zhang Y, Wang TH (2013) Full-range magnetic manipulation of droplets via surface energy traps enables complex bioassays. Adv Mater 25:2903–2908

    Article  Google Scholar 

  • Zhang Y, Park S, Liu K, Tsuan J, Yang S, Wang T-H (2011) A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification. Lab Chip 11:398–406

    Article  Google Scholar 

  • Zhang W, Yang FK, Han Y, Gaikwad R, Leonenko Z, Zhao B (2013a) Surface and tribological behaviors of the bioinspired polydopamine thin films under dry and wet conditions. Biomacromol 14:394–405

    Article  Google Scholar 

  • Zhang Y, Shin DJ, Wang T-H (2013b) Serial dilution via surface energy trap-assisted magnetic droplet manipulation. Lab Chip 13:4827–4831

    Article  Google Scholar 

  • Zhang Y, Geng X, Ai J, Gao Q, Qi H, Zhang C (2015) Signal amplification detection of DNA using a sensor fabricated by one-step covalent immobilization of amino-terminated probe DNA onto the polydopamine-modified screen-printed carbon electrode. Sens Actuators B Chem 221:1535–1541

    Article  Google Scholar 

  • Zhang P, He M, Zeng Y (2016) Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip 16:3033–3042

    Article  Google Scholar 

  • Zhao Y, Liu X, Li J, Qiang W, Sun L, Li H, Xu D (2016) Microfluidic chip-based silver nanoparticles aptasensor for colorimetric detection of thrombin. Talanta 150:81–87

    Article  Google Scholar 

  • Zhou P, Deng Y, Lyu B, Zhang R, Zhang H, Ma H, Lyu Y, Wei S (2014) Rapidly-deposited polydopamine coating via high temperature and vigorous stirring: formation, characterization and biofunctional evaluation. PLoS ONE 9(11):e113087

    Article  Google Scholar 

  • Zou Z, Jang A, MacKnight E, Wu P-M, Do J, Bishop PL, Ahn CH (2008) Environmentally friendly disposable sensors with microfabricated on-chip planar bismuth electrode for in situ heavy metal ions measurement. Sens Actuators B Chem 134:18–24

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the start-up grant from the School of Mechanical and Aerospace Engineering at Nanyang Technological University. This work is also supported by the Ageing Research Institute for Society and Education (ARISE), Nanyang Technological University, Singapore (Grant Reference Number ARISE/2017/22), and Singapore Ministry of Education AcRF Tier 1 Grant RG49/17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanitthamniyom, P., Zhang, Y. Application of polydopamine in biomedical microfluidic devices. Microfluid Nanofluid 22, 24 (2018). https://doi.org/10.1007/s10404-018-2044-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-018-2044-6

Keywords

Navigation