Skip to main content
Log in

Rotary polymer micromachines: in situ fabrication of microgear components in microchannels

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This paper presents in situ fabrication of polymeric machine elements operated by hydrodynamic forcing. With a single-step production, rotary polymer microgears are installed in microfluidic channels via UV-induced polymerization. First, a single microgear is formed, and its rotational performance is characterized as a function of the flow rate of a polymer solution. Then, the rotation of multiple microgears in a single microchannel is demonstrated, where all of the gears are driven by a single fluid flow stream. Finally, paired microgears are fabricated, and the gears show the ability to transmit torque. This ability may be integrated to build polymer microelectromechanical systems that are useful for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn CH, Allen MG (1995) Fluid micropumps based on rotary magnetic actuators. Proc IEEE MEMS 1995:408–412

    Google Scholar 

  • Attia R, Pregibon DC, Doyle PS, Viovy J-L, Bartolo D (2007) Soft microflow sensors. Proc MicroTAS 2007:1146–1148

    Google Scholar 

  • Attia R, Pregibon DC, Doyle PS, Viovy J-L, Bartolo D (2009) Soft microflow sensors. Lab Chip 9(9):1213–1218

    Article  Google Scholar 

  • Bustillo JM, Howe RT, Muller RS (1998) Surface micromachining for microelectromechanical systems. Proc IEEE 86(8):1552–1574

    Article  Google Scholar 

  • Chang WC, Sretavan DW (2007) Microtechnology in medicine: the emergence of surgical microdevices. Clin Neurosurg 54:137–147

    Google Scholar 

  • Chung SE, Kim J, Choi S-E, Kim LN, Kwon S (2011) In situ fabrication and actuation of polymer magnetic microstructures. J Microelectromech Syst 20(4):785–787

    Article  Google Scholar 

  • Dendukuri D, Pregibon DC, Collins J, Hatton TA, Doyle PS (2006) Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater 5(5):365–369

    Article  Google Scholar 

  • Dendukuri D, Gu SS, Pregibon DC, Hatton TA, Doyle PS (2007) Stop-flow lithography in a microfluidic device. Lab Chip 7(7):818–828

    Article  Google Scholar 

  • Dendukuri D, Panda P, Haghgooie R, Kim JM, Hatton TA, Doyle PS (2008) Modeling of oxygen-inhibited free radical photopolymerization in a PDMS microfluidic device. Macromolecules 41(22):8547–8556

    Article  Google Scholar 

  • Garcia EJ, Sniegowski JJ (1995) Surface micromachined microengine. Sens Actuators A 48(3):203–214

    Article  Google Scholar 

  • Ghalichechian N, Modafe A, Beyaz MI, Ghodssi R (2008) Design, fabrication, and characterization of a rotary micromotor supported on microball bearings. J Microelectromech Syst 17(3):632–642

    Article  Google Scholar 

  • Grayson ACR, Shawgo RS, Johnson AM, Flynn NT, Yawen LI, Cima MJ, Langer R (2004) A BioMEMS review: MEMS technology for physiologically integrated devices. Proc IEEE 92(1):6–21

    Article  Google Scholar 

  • Hiratsuka Y, Miyata M, Tada T, Uyeda TQP (2006) A microrotary motor powered by bacteria. Proc Natl Acad Sci 103(37):13618–13623

    Article  Google Scholar 

  • Ho C-M, Tai Y-C (1998) Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu Rev Fluid Mech 30(1):579–612

    Article  Google Scholar 

  • Hwang DK, Dendukuri D, Doyle PS (2008) Microfluidic-based synthesis of non-spherical magnetic hydrogel microparticles. Lab Chip 8(10):1640–1647

    Article  Google Scholar 

  • Li M, Humayun M, Kozinski JA, Hwang DK (2014) Functional polymer sheet patterning using microfluidics. Langmuir 30(28):8637–8644

    Article  Google Scholar 

  • Moon B-U, Lee J-M, Shim C-H, Lee M-B, Lee J-H, Lee D-D, Lee J-H (2005) Silicon bridge type micro-gas sensor array. Sens Actuators B 108(2):271–277

    Article  Google Scholar 

  • Neale SL, MacDonald MP, Dholakia K, Krauss TF (2005) All-optical control of microfluidic components using form birefringence. Nat Mater 4(7):530–533

    Article  Google Scholar 

  • Panda P, Ali S, Lo E, Chung BG, Hatton TA, Khademhosseini A, Doyle PS (2008) Stop-flow lithography to generate cell-laden microgel particles. Lab Chip 8(7):1056–1061

    Article  Google Scholar 

  • Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5(3):491–502

    Article  Google Scholar 

  • Ryu KS, Shaikh K, Goluch E, Fan Z, Liu C (2004) Micro magnetic stir-bar mixer integrated with parylene microfluidic channels. Lab Chip 4(6):608–613

    Article  Google Scholar 

  • Shepherd RF, Panda P, Bao Z, Sandhage KH, Hatton TA, Lewis JA, Doyle PS (2008) Stop-flow lithography of colloidal, glass, and silicon microcomponents. Adv Mater 20(24):4734–4739

    Article  Google Scholar 

  • Stark KC, Azzam Yasseen A, Phillips SM, Mehregany M (2002) Micro torque measurement using outer-rotor polysilicon micromotors. Sens Proc IEEE 2002:1751–1756

    Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices. Annu Rev Fluid Mech 36(1):381–411

    Article  Google Scholar 

  • White FM (2003) Fluid mechanics, 5th edn. McGraw-Hill, New York

  • Wu Z, Frederic KJ, Talarico M, De Kee D (2009) Porous polymer monolith templated by small polymer molecules. Can J Chem Eng 87(4):579–583

    Article  Google Scholar 

  • Yue T, Nakajima M, Takeuchi M, Fukuda T (2014) Improved laser manipulation for on-chip fabricated microstructures based on solution replacement and its application in single cell analysis. Int J Adv Robot Syst 11:1–7

    Article  Google Scholar 

Download references

Acknowledgments

D.K. Hwang (Grant No. 386092-2010) and S.S.H. Tsai (Grant No. 435514-2013) both acknowledge funding support from Canada’s Natural Sciences and Engineering Research Council (NSERC) Discovery grants program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae Kun Hwang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, BU., Tsai, S.S.H. & Hwang, D.K. Rotary polymer micromachines: in situ fabrication of microgear components in microchannels. Microfluid Nanofluid 19, 67–74 (2015). https://doi.org/10.1007/s10404-015-1548-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1548-6

Keywords

Navigation