Skip to main content
Log in

Permeability model for fractal porous media with rough surfaces

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this paper, a permeability model is derived for porous media, which are assumed to be comprised of a bundle of tortuous capillaries whose size distribution and roughness of surfaces follow the fractal scaling laws. The proposed model includes the effects of the fractal dimensions for size distributions of capillaries, for tortuosity of tortuous capillaries and for roughness of surfaces on the permeability. The analytical expression for permeability is a function of the relative roughness, the fractal dimensions for tortuosity and sizes of capillaries and for roughness of surfaces, as well as the microstructural parameters (such as the characteristic length, the maximum and minimum pore diameters and the fractal dimensions). The proposed model can properly reveal some mechanisms that affect the permeability. Every parameter in the proposed model has specific physical meaning. The ratio of the permeability (\( K_{\text{R}} \)) for rough capillaries to that (K) for smooth capillaries is found to be a function of the relative roughness and follows the quadruplicate power law, i.e., \( K_{\text{R}} /K = (1 - \varepsilon )^{4} \), where \( \varepsilon \) is the relative roughness of surfaces of capillaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmadi MM, Mohammadi S, Hayati AN (2011) Analytical derivation of tortuosity and permeability of monosized spheres: a volume averaging approach. Phys Rev E 83(2):026312

    Article  Google Scholar 

  • Barber RW, Emerson DR (2008) Optimal design of microfluidic networks using biologically inspired principles. Microfluid Nanofluid 4(3):179–191

    Article  Google Scholar 

  • Bogdanov I, Mourzenko V, Thovert J-F, Adler P (2007) Effective permeability of fractured porous media with power-law distribution of fracture sizes. Phys Rev E 76(3):036309

    Article  Google Scholar 

  • Cai J, Hu X, Standnes DC, You L (2012) An analytical model for spontaneous imbibition in fractal porous media including gravity. Colloids Surf A 414:228–233

    Article  Google Scholar 

  • Cai J, Perfect E, Cheng C-L, Hu X (2014) Generalized modeling of spontaneous imbibition based on Hagen-Poiseuille flow in tortuous capillaries with variably shaped apertures. Langmuir 30(18):5142–5151

    Article  Google Scholar 

  • Carman PC, Carman PC (1956) Flow of gases through porous media. Butterworths Scientific Publications, London

    MATH  Google Scholar 

  • Castro M, Bravo-Gutiérrez M, Hernández-Machado A, Poiré EC (2008) Dynamic characterization of permeabilities and flows in microchannels. Phys Rev L 101(22):224501

    Article  Google Scholar 

  • Chen Z, Cheng P, Zhao T (2000) An experimental study of two phase flow and boiling heat transfer in bi-dispersed porous channels. Int Commun Heat Mass 27(3):293–302

    Article  Google Scholar 

  • Chen Y, Zhang C, Shi M, Peterson GP (2010a) Optimal surface fractal dimension for heat and fluid flow in microchannels. Appl Phys Lett 97(8):084101

    Article  Google Scholar 

  • Chen Y, Fu P, Zhang C, Shi M (2010b) Numerical simulation of laminar heat transfer in microchannels with rough surfaces characterized by fractal cantor structures. Int J Heat Fluid Flow 31(4):622–629

    Article  Google Scholar 

  • Chen Y, Zhang C, Fu P, Shi M (2012a) Characterization of surface roughness effects on laminar flow in microchannels by using fractal cantor structures. J Heat Transf 134(5):051011

    Article  Google Scholar 

  • Chen Y, Zhang C, Shi M, Peterson GP (2012b) Slip boundary for fluid flow at rough solid surfaces. Appl Phys Lett 100(7):074102

    Article  Google Scholar 

  • Denn MM (1980) Process fluid mechanics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Galindo-Torres S, Scheuermann A, Li L (2012) Numerical study on the permeability in a tensorial form for laminar flow in anisotropic porous media. Phys Rev E 86(4):046306

    Article  Google Scholar 

  • Gamrat G, Favre-marinet M, Leprson S, Baviere R, Ayela F (2008) An experimental study and modelling of roughness effects on laminar flow in microchannels. J Fluid Mech 594:399–423

    Article  MATH  Google Scholar 

  • Garcia X, Akanji LT, Blunt MJ, Matthai SK, Latham JP (2009) Numerical study of the effects of particle shape and polydispersity on permeability. Phys Rev E 80(2):021304

    Article  Google Scholar 

  • Guo L, Jiao L, Wu Z (2001) Electromagnetic scattering from two-dimensional rough surface using the Kirchhoff Approximation. Chin Phys Lett 18(2):214–216

    Article  Google Scholar 

  • Harting J, Kunert C, Hyväluoma J (2010) Lattice Boltzmann simulations in microfluidics: probing the no-slip boundary condition in hydrophobic, rough, and surface nanobubble laden microchannels. Microfluid Nanofluid 8(1):1–10

    Article  Google Scholar 

  • He L, Zhu J (1997) The fractal character of processed metal surfaces. Wear 208(1):17–24

    Article  Google Scholar 

  • Johnson DL (1989) Scaling function for dynamic permeability in porous media. Phys Rev L 63(5):580

    Article  Google Scholar 

  • Kandlikar SG, Schmitt D, Carrano AL, Taylor JB (2005) Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels. Phys Fluids 17(10):100606

    Article  Google Scholar 

  • Lee SJ, Kim H, Ahn S (2014) Water transport in porous hydrogel structures analogous to leaf mesophyll cells. Microfluid Nanofluid. doi:10.1007/s10404-014-1418-7

  • Li Z-X (2003) Experimental study on flow characteristics of liquid in circular microtubes. Microscale Thermophys Eng 7(3):253–265

    Article  Google Scholar 

  • Li L, Yu B (2013) Fractal analysis of the effective thermal conductivity of biological media embedded with randomly distributed vascular trees. Int J Heat Mass Transf 67:74–80

    Article  Google Scholar 

  • Li J, Yu B, Zou M (2009) A model for fractal dimension of rough surfaces. Chin Phys Lett 26(11):116101

    Article  Google Scholar 

  • Mahovic Poljacek S, Risovic D, Furic K, Gojo M (2008) Comparison of fractal and profilometric methods for surface topography characterization. Appl Surf Sci 254(11):3449–3458

    Article  Google Scholar 

  • Majumdar A, Bhushan B (1990) Role of fractal geometry in roughness characterization and contact mechanics of surfaces. J Tribol 112(2):205–216

    Article  Google Scholar 

  • Majumdar A, Bhushan B (1991) Fractal model of elastic-plastic contact between rough surfaces. J Tribol 113(1):1–11

    Article  Google Scholar 

  • MaLa M, Li D (1999) Flow characteristics of water in microtubes. Int J Heat Fluid Flow 20(2):142–148

    Article  Google Scholar 

  • Manwart C, Aaltosalmi U, Koponen A, Hilfer R, Timonen J (2002) Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media. Phys Rev E 66(1):016702

    Article  Google Scholar 

  • Mourzenko V, Thovert J-F, Adler P (2001) Permeability of self-affine fractures. Transport Porous Med 45(1):89–103

    Article  Google Scholar 

  • Pandey RB, Becklehimer JL (1995) Computer simulation study of the permeability of a porous sediment model. Phys Rev E 51(4):3341

    Article  Google Scholar 

  • Pfund D, Rector D, Shekarriz A, Popescu A, Welty J (2000) Pressure drop measurements in a microchannel. AIChE J 46(8):1496–1507

    Article  Google Scholar 

  • Qu W, Mala M, Dongqing L (2000) Pressure-driven water flows in trapezoidal silicon microchannels. Int J Heat Mass Transf 43(3):353–364

    Article  MATH  Google Scholar 

  • Rawool A, Mitra SK, Kandlikar S (2006) Numerical simulation of flow through microchannels with designed roughness. Microfluid Nanofluid 2(3):215–221

    Article  Google Scholar 

  • Scholz C, Wirner F, Götz J, Rüde U, Schröder-Turk GE, Mecke K, Bechinger C (2012) Permeability of porous materials determined from the Euler characteristic. Phys Rev Lett 109(26):264504

    Article  Google Scholar 

  • Shen S, Xu J, Zhou J, Chen Y (2006) Flow and heat transfer in microchannels with rough wall surface. Energy Convers Manage 47(11):1311–1325

    Article  Google Scholar 

  • Sheng P, Zhou M-Y (1988) Dynamic permeability in porous media. Phys Rev Lett 61(14):1591

    Article  Google Scholar 

  • Shou D, Fan J, Ding F (2010) A difference-fractal model for the permeability of fibrous porous media. Phys Lett A 374(10):1201–1204

    Article  MATH  Google Scholar 

  • Shou D, Fan J, Ding F (2011) Hydraulic permeability of fibrous porous media. Int J Heat Mass Transf 54(17):4009–4018

    Article  MATH  Google Scholar 

  • Sobera M, Kleijn C (2006) Hydraulic permeability of ordered and disordered single-layer arrays of cylinders. Phys Rev E 74(3):036301

    Article  Google Scholar 

  • Warren TL, Krajcinovic D (1996) Random cantor set models for the elastic-perfectly plastic contact of rough surfaces. Wear 196(1):1–15

    Article  MathSciNet  Google Scholar 

  • Xiong R, Chung JN (2010) Investigation of laminar flow in microtubes with random rough surfaces. Microfluid Nanofluid 8(1):11–20

    Article  Google Scholar 

  • Xu P, Yu B (2008) Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry. Adv Water Resour 31(1):74–81

    Article  Google Scholar 

  • Yang S, Yu B, Zou M, Liang M (2014) A fractal analysis of laminar flow resistance in roughened microchannels. Int J Heat Mass Transf 77:208–217

    Article  Google Scholar 

  • Yu B, Cheng P (2002) A fractal permeability model for bi-dispersed porous media. Int J Heat Mass Transf 45(14):2983–2993

    Article  MATH  Google Scholar 

  • Yu B, Li J (2001) Some fractal characters of porous media. Fractals 9(03):365–372

    Article  Google Scholar 

  • Yu B, Li J (2004) A geometry model for tortuosity of flow path in porous media. Chin Phys Lett 21(8):1569–1571

    Article  Google Scholar 

  • Yu B, Lee LJ, Cao H (2002) A fractal in-plane permeability model for fabrics. Polym Compos 23(2):201–221

    Article  Google Scholar 

  • Zhang C, Chen Y, Deng Z, Shi M (2012) Role of rough surface topography on gas slip flow in microchannels. Phys Rev E 86(1):016319

    Article  Google Scholar 

  • Zhang C, Deng Z, Chen Y (2014) Temperature jump at rough gas–solid interface in Couette flow with a rough surface described by Cantor fractal. Int J Heat Mass Transf 70:322–329

    Article  Google Scholar 

  • Zhu Q, Xie M, Yang J, Chen Y, Liao K (2012) Analytical determination of permeability of porous fibrous media with consideration of electrokinetic phenomena. Int J Heat Mass Transf 55:1716–1723

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This study was supported by Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University) (PLN1203) and the National Natural Science Foundation of China (Grant Nos. 11102069 and 10932010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boming Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Liang, M., Yu, B. et al. Permeability model for fractal porous media with rough surfaces. Microfluid Nanofluid 18, 1085–1093 (2015). https://doi.org/10.1007/s10404-014-1500-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1500-1

Keywords

Navigation