Skip to main content
Log in

Slippage of binary fluid mixtures in a nanopore

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This work focuses on the slip phenomenon at the fluid–solid interface accompanying Poiseuille flow of simple binary miscible fluids in a slit nanopore. To explore such flows, molecular dynamics simulations are used on Lennard–Jones binary mixtures composed of species of varying affinities with the walls. The results have shown that the apparent slip magnitude at the fluid–solid interface depends largely on the species that is dominant in contact with the walls. In addition, it has been shown that the velocity profiles of each species (of different “wettability”) does not superpose with the velocity profile of the mixture and such a result points out the limitations of the classical approaches based on a single momentum conservation equation to deal with mixtures flow in nanochannels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford Science Publications, Oxford

    MATH  Google Scholar 

  • Ameur D (2008) Modélisation analytique et simulation numérique par la méthode de Monte Carlo d’un écoulement de gaz dans des micro-canaux. PhD thesis, Université Pierre et Marie Curie, France

  • Ameur D, Croizet C, Maroteaux F, Gatignol R (2008) Simulation of pressure and temperature driven flows in microchannels. Conf Proc Rarefied Gas Dyn 1084(1):1129–1134

    Google Scholar 

  • Barrat JL, Bocquet L (1999) Large slip effect at a nonwetting fluid–solid interface. Phys Rev Lett 82(23):4671–4674

    Article  Google Scholar 

  • Bear J (1988) Dynamics of fluids in porous media. Dover Publications, New York

    MATH  Google Scholar 

  • Berendsen H, Postma J, Gusteren WV, Dinola A, Haak J (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  Google Scholar 

  • Bocquet L, Barrat JL (2007) Flow boundary conditions from nano- to micro-scales. Soft Matter 3(6):685–693

    Article  Google Scholar 

  • Bugel M, Galliéro G, Caltagirone JP (2011) Hybrid atomistic–continuum simulations of fluid flows involving interfaces. Microfluid Nanofluid 10(3):637–647

    Article  Google Scholar 

  • Colombani J, Galliéro G, Duguay B, Caltagirone JP, Montel F, Bopp PA (2003) Molecular dynamics study of thermal diffusion in a binary mixture of alkanes trapped in a slit pore. Phil Mag 83(17–18):2087–2095

    Article  Google Scholar 

  • Denniston C, Robbins MO (2001) Molecular and continuum boundary conditions for a miscible binary fluid. Phys Rev Lett 87(17):1783021–1783024

    Article  Google Scholar 

  • Denniston C, Robbins MO (2006) General continuum boundary conditions for miscible fluids from molecular dynamics simulations. J Chem Phys 125(21):214102

    Article  Google Scholar 

  • Galliéro G, Boned C, Baylaucq A (2005) Molecular dynamics study of the Lennard–Jones fluid viscosity: application to real fluids. Ind Eng Chem Res 44(17):6963–6972

    Article  Google Scholar 

  • Granick S, Zhu Y, Lee H (2003) Slippery questions about complex fluids flowing past solids. Nat Mater 2(4):221–227

    Article  Google Scholar 

  • Hannaoui R, Galliéro G, Ameur D, Boned C (2011) Molecular dynamics simulations of heat and mass transport properties of a simple binary mixture in micro/meso-pores. Chem Phys 389(1–3):53–57

    Article  Google Scholar 

  • Hoang H, Galliéro G (2012a) Grand canonical-like molecular dynamics simulations: application to anisotropic mass diffusion in a nanoporous medium. J Chem Phys 136:184702

    Article  Google Scholar 

  • Hoang H, Galliéro G (2012b) Shear viscosity of inhomogeneous fluids. J Chem Phys 136:124902

    Article  Google Scholar 

  • Hsu HY, Patankar NA (2010) A continuum approach to reproduce molecular-scale slip behaviour. J Fluid Mech 645:59–80

    Article  MathSciNet  MATH  Google Scholar 

  • Huang DM, Sendner C, Horinek D, Netz R, Bocquet L (2008) Water slippage versus contact angle: a quasiuniversal relationship. Phys Rev Lett 101(22):226101

    Article  Google Scholar 

  • Israelachvili J (2010) Intermolecular and surface forces, 3rd edn. Academic Press, London

    Google Scholar 

  • Karniadakis Em, Beskok A (2002) Micro flows: fundamentals and simulation. Springer, New York

    Google Scholar 

  • Kerkhof PJAM, Geboers MAM (2005) Analysis and extension of the theory of multicomponent fluid diffusion. Chem Eng Sci 60(12):3129–3167

    Article  Google Scholar 

  • Khare R, Keblinski P, Yethiraj A (2006) Molecular dynamics simulations of heat and momentum transfer at a solid–fluid interface: relationship between thermal and velocity slip. Int J Heat Mass Transf 49(19–20):3401–3407

    Article  MATH  Google Scholar 

  • Kim BH, Beskok A, Cagin T (2008) Thermal interactions in nanoscale fluid flow: molecular dynamics simulations with solid–liquid interfaces. Microfluid Nanofluid 5(4):551–559

    Article  Google Scholar 

  • Kim SH, Pitsch H, Boyd ID (2009) Lattice Boltzmann modeling of multicomponent diffusion in narrow channel. Phys Rev E 79(1):016702

    Article  Google Scholar 

  • Maxwell C (1879) On stresses in rarified gases arising from inequalities of temperature. Philos Trans R Soc Lond 170:231–256

    Article  MATH  Google Scholar 

  • Montel F, Bickaert J, Lagisquet A, Galliéro G (2007) Initial state of petroleum reservoirs: a comprehensive approach. J Pet Sci Eng 58:391–402

    Article  Google Scholar 

  • Schoen M (1993) Computer simulation of condensed phases in complex geometries. New Series Monographs, Lecture Note in Physics, M17. Springer, Berlin

  • Sokhan PV, Nicholson D, Quirke N (2002) Fluid flow in nanopores: accurate boundary conditions for carbon nanotubes. J Chem Phys 117(18):8531–8539

    Article  Google Scholar 

  • Tretheway DC, Meinhart CD (2002) Apparent fluid slip at hydrophobic microchannel walls. Phys Fluids Lett 14(3):L9–L12

    Article  Google Scholar 

  • Verlet L (1967) Computer experiment on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules. Phys Rev 159:98–103

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge computational facilities provided by the UPPA. D. A. acknowledges the Conseil Regional d’Aquitaine for a post-doctoral grant. This work has been partially supported by a ERC advanced grant through the “Failflow” project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djilali Ameur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ameur, D., Galliéro, G. Slippage of binary fluid mixtures in a nanopore. Microfluid Nanofluid 15, 183–189 (2013). https://doi.org/10.1007/s10404-013-1141-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1141-9

Keywords

Navigation