Skip to main content
Log in

Free-floating amphiphilic picoliter droplet carriers for multiplexed liquid loading in a microfluidic channel

  • Communication Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We present free-floating amphiphilic picoliter microcarriers for multiplexed loading in a microfluidic device. The amphiphilic microcarrier is composed of encoded hydrophobic hexagonal outer structure and hydrophilic inner structure. We fabricate these free-floating droplet carriers and assemble them in a microfluidic device for a demonstration of multiplexed liquid loading. Picoliter loading is performed by serial solution exchange of aqueous and oil phase solution. We are able to precisely adjust the loaded volume by varying the diameter and depth of the microcarrier. We also fabricate arbitrary shaped microwells and load picoliter droplets into them. A microbead suspension is also used to demonstrate mixing via continuous oil flow. Further development of this work may be applicable to high-throughput multiplexed assays using quantized liquid loading in a microfluidic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beebe DJ, Moore JS, Bauer JM et al (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590

    Article  Google Scholar 

  • Birtwell S, Morgan H (2009) Microparticle encoding technologies for high-throughput multiplexed suspension assays. Integr Biol 1:345–362

    Article  Google Scholar 

  • Bong KW, Chapin SC, Doyle PS (2010) Magnetic barcoded hydrogel microparticles for multiplexed detection. Langmuir 26:8008–8014

    Article  Google Scholar 

  • Braeckmans K, De Smedt S, Leblans M et al (2002) Encoding microcarriers: present and future technologies. Nat Rev Drug Discov 1:447–456

    Article  Google Scholar 

  • Braeckmans K, De Smedt SC, Roelant C et al (2003) Encoding microcarriers by spatial selective photobleaching. Nat Mater 2:169–173

    Article  Google Scholar 

  • Chapin SC, Pregibon DC, Doyle PS (2009) High-throughput flow alignment of barcoded hydrogel microparticles. Lab Chip 9:3100–3109

    Article  Google Scholar 

  • Chung SE, Park W, Park H et al (2007) Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels. Appl Phys Lett 91:041106

    Article  Google Scholar 

  • Dendukuri D, Pregibon DC, Collins J, Hatton TA, Doyle PS (2006) Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater 5:365–369

    Article  Google Scholar 

  • Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5:210–218

    Article  Google Scholar 

  • Edd JF, Di Carlo D, Humphry KJ et al (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8:1262–1264

    Article  Google Scholar 

  • Hong J, Edel JB, Demello AJ (2009) Micro- and nanofluidic systems for high-throughput biological screening. Drug Discov Today 14:134–146

    Article  Google Scholar 

  • Hwang DK, Oakey J, Toner M et al (2009) Stop-flow lithography for the production of shape-evolving degradable microgel particles. J Am Chem Soc 131:4499–4504

    Article  Google Scholar 

  • Kim S-H, Shim JW, Yang S-M (2011) Microfluidic multicolor encoding of microspheres with nanoscopic surface complexity for multiplex immunoassays. Angew Chem Int Ed 50:1171–1174

    Article  Google Scholar 

  • Kumacheva E, Garstecki P, Wu H et al (2003) Two-dimensional colloid crystals obtained by coupling of flow and confinement. Phys Rev Lett 91:128301

    Article  Google Scholar 

  • Lee H, Kim J, Kim H et al (2010) Colour barcoded magnetic microparticles for multiplexed bioassays. Nat Mater 9:745–749

    Article  Google Scholar 

  • Lee SA, Chung SE, Park W et al (2009) Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography. Lab Chip 9:1670–1675

    Article  Google Scholar 

  • Meiring JE, Lee S, Costner EA et al (2009) Pattern recognition of shape-encoded hydrogel biosensor arrays. Opt Eng 48:037201–037214

    Article  Google Scholar 

  • Nam J-M, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301:1884–1886

    Article  Google Scholar 

  • Niu X, Gielen F, Edel JB et al (2011) A microdroplet dilutor for high-throughput screening. Nat Chem 3:437–442

    Article  Google Scholar 

  • Panda P, Ali S, Lo E et al (2008) Stop-flow lithography to generate cell-laden microgel particles. Lab Chip 8:1056–1061

    Article  Google Scholar 

  • Park W, Han S, Kwon S (2010) Fabrication of membrane-type microvalves in rectangular microfluidic channels via seal photopolymerization. Lab Chip 10:2814–2817

    Article  Google Scholar 

  • Park W, Lee H, Park H et al (2009) Sorting directionally oriented microstructures using railed microfluidics. Lab Chip 9:2169–2175

    Article  Google Scholar 

  • Pregibon DC, Toner M, Doyle PS (2007) Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315:1393–1396

    Article  Google Scholar 

  • Tan W-H, Takeuchi S (2007) A trap-and-release integrated microfluidic system for dynamic microarray applications. Proc Natl Acad Sci 104:1146–1151

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  • Wilson R, Cossins AR, Spiller DG (2006) Encoded microcarriers for high-throughput multiplexed detection. Angew Chem Int Ed 45:6104–6117

    Article  Google Scholar 

  • Wilson R, Spiller DG, Prior IA et al (2007) A simple method for preparing spectrally encoded magnetic beads for multiplexed detection. ACS Nano 1:487–493

    Article  Google Scholar 

  • Wolcke J, Ullmann D (2001) Miniaturized HTS technologies—uHTS. Drug Discov Today 6:637–646

    Article  Google Scholar 

  • Yliperttula M, Chung BG, Navaladi A et al (2008) High-throughput screening of cell responses to biomaterials. Eur J Pharm Sci 35:151–160

    Article  Google Scholar 

  • Zhao Y, Shum HC, Chen H et al (2011) Microfluidic generation of multifunctional quantum dot barcode particles. J Am Chem Soc 133:8790–8793

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-0028409, 2011-0016491, NRF-2011-35B-D00015), by Hi Seoul Science/Humanities Fellowship from Seoul Scholarship Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wook Park or Sunghoon Kwon.

Additional information

W. Park and S. Han contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 195 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, W., Han, S., Lee, H. et al. Free-floating amphiphilic picoliter droplet carriers for multiplexed liquid loading in a microfluidic channel. Microfluid Nanofluid 13, 511–518 (2012). https://doi.org/10.1007/s10404-012-0989-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-0989-4

Keywords

Navigation