Skip to main content
Log in

Spectral characterization of mixing properties of annular MHD micromixers

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We develop a quantitative analysis of mixing regimes in an annular MHD-driven micromixer recently proposed by Gleeson et al. as a prototype for biomolecular applications. The analysis is based on the spectral properties of the advection–diffusion operator, with specific focus on the dependence of the dominant eigenvalue–eigenfunction on the Peclet number and on the system geometry. A theoretical prediction for the dominant eigenvalue encompassing all mixing regimes is developed and validated by comparison with numerical simulations. The theoretical prediction is extended to an open inflow–outflow version of the reactor, which shows the occurrence of new regimes associated with the existence of a nonuniform axial flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Aref H (2002) The development of chaotic advection. Phys Fluids 14:1315–1325

    Article  MathSciNet  Google Scholar 

  • Aris R (1956) On the dispersion of a solute in a fluid flowing through a tube. Proc R Soc A 235:67–77

    Article  Google Scholar 

  • Cerbelli S, Vitacolonna V. Adrover A, Giona M (2004) Eigenvalue–eigenfunction analysis of infinitely fast reactions and micromixing regimes in regular and chaotic bounded flow. Chem Eng Sci 59:2125–2144

    Article  Google Scholar 

  • Chang C-C, Yang R-J (2007) Electrokinetic mixing in microfluidic systems. Microfluid Nanofluid 3:501–525

    Article  MathSciNet  Google Scholar 

  • Chomaz JM (2005) Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu Rev Fluid Mech 37:357–392

    Article  MathSciNet  Google Scholar 

  • Erickson D, Li D (2002) Microchannel flow with patch-wise and periodic surface heterogeneity. Langmuir 18:1883–1892

    Article  Google Scholar 

  • Erickson D, Li D (2003a) Three-dimensional structure of electroosmotic flows over periodically heterogeneous surface patterns. J Chem Phys B 107:12212–12220

    Article  Google Scholar 

  • Erickson D, Li D (2003b) Modeling of DNA hybridization kinetics for spatially resolved biochips. Anal Biochem 317:186–200

    Article  Google Scholar 

  • Giona M, Adrover A, Cerbelli S, Vitacolonna V (2004a) Spectral properties and transport mechanisms of partially chaotic bounded flows in the presence of diffusion. Phys Rev Lett 92:114101

    Article  Google Scholar 

  • Giona M, Cerbelli S, Vitacolonna V (2004b) Universality and imaginary potentials in advection–diffusion equations in closed flows. J Fluid Mech 513:221–237

    Article  MathSciNet  MATH  Google Scholar 

  • Giona M, Vitacolonna V, Cerbelli S, Adrover A (2004c) advection–diffusion in non-chaotic closed flows: non-Hermitian operators, universality and localization. Phys Rev E 70:1539–1555

    Article  Google Scholar 

  • Giona M, Cerbelli S (2008) Localization and spectral phase-transition in an open advecting-diffusing 3d-Stokes flow. Phys Rev E (in press)

  • Giona M, Cerbelli S, Creta F (2008) Spectral properties and universal behavior of advecting-diffusing scalar fields in finite-length channels. J Fluid Mech (in press)

  • Gleeson JP, Roche OM, West J, Gelb A (2004) Modelling annular micromixers. SIAM J Appl Math 64:1294–1310

    Article  MathSciNet  MATH  Google Scholar 

  • Gleeson JP (2005) Transient micromixing: examples of laminar and chaotic stirring. Phys Fluids 17:100614

    Article  MathSciNet  Google Scholar 

  • Hardt S, Drese KS, Hessel V, Schönfeld F (2005) Passive micromixers for applications in the microreactor and μTAS fields. Microfluid Nanofluid 1:108–118

    Article  Google Scholar 

  • Hardt S, Penneman H, Schönfeld F (2006) Theoretical and experimental characterization of a low-Reynolds number split-and-recombine mixer. Microfluid Nanofluid 2:237–248

    Article  Google Scholar 

  • Kandlikar SG, Garimella S, Li D, Colin S, King MR (2006) Heat transfer and fluid flow in minichannels and microchannels. Elsevier, Amsterdam

    Google Scholar 

  • Kim DS, Lee SH, Kwon TH, Ahn CH (2005) A serpentine laminating micromixer combining splitting/recombination and advection. Lab Chip 5:739–747

    Article  Google Scholar 

  • Kim HJK, Beskok A (2007) Quantification of chaotic strength and mixing in a micro fluidic system. J Micromech Microeng 17:2197–2210

    Article  Google Scholar 

  • Lasota A, Mackey MC (1994) Chaos, fractals and noise. Stochastic aspects of dynamics. Springer, New York

    MATH  Google Scholar 

  • Lemoff AV, Lee AP (2000) An AC magnetohydrodynamic micropump. Sens Actuator B 63:178–185

    Article  Google Scholar 

  • Metcalfe G, Rudman M, Brydon A, Graham LJW, Hamilton R (2006) Composing chaos: an experimental and numerical study of an open duct mixing flow. AIChE J 52:9–28

    Article  Google Scholar 

  • Nguyen NT, Wu Z (2005) Micromixers—a review. J Micromech Microeng 15:R1–R16

    Article  Google Scholar 

  • Pacheco JR, Chen KP, Hayes MA (2006) Rapid and efficient mixing in a slip-driven three-dimensional flow in a rectangular channel. Fluid Dyn Res 38:503–521

    Article  MATH  Google Scholar 

  • Pacheco JR, Chen KP, Pacheco-Vega A, Chen B, Hayes MA (2008) Chaotic mixing enhancement in electro-osmotic flows by random periodic modulation. Phys Lett A 372:1001–1008

    Article  Google Scholar 

  • Qian S, Zhu J, Bau HH (2002) A stirrer for magnetohydrodynamically controlled minute fluidic networks. Phys Fluids 14:3584–3592

    Article  Google Scholar 

  • Schmid PJ (2007) Nonmodal stability theory. Annu Rev Fluid Mech 39:129–162

    Article  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026

    Article  Google Scholar 

  • Sterbacek Z, Tausk P (1965) Mixing in the chemical industry. Pergamon Press, Oxford

    Google Scholar 

  • Taylor GI (1954) The dispersion of matter in solvent flowing slowly through a tube. Proc R Soc A 223:446–468

    Article  Google Scholar 

  • Wang L, Yang J-T, Lyu P-C (2007) An overlapping crisscross micromixer. Chem Eng Sci 62:711–720

    Article  Google Scholar 

  • West J., Karamata B, Lillis B, Gleeson JP, Alderman J, Collins JK, Lane W, Mathewson A, Berney H (2002) Application of magnetohydrodynamic actuation to continuous flow chemistry. Lab Chip 2:224–230

    Article  Google Scholar 

  • West J, Gleeson JP, Alderman J, Collins JK, Berney H (2003) Structuring laminar flows using annular magnetohydrodynamic actuation. Sens Actuators B 96:190–199

    Article  Google Scholar 

  • Xiang Y, Bau HH (2003) Complex magnetohydrodynamic low-Reynolds-number flows. Phys Rev E 68:016312.1–11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Giona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerbelli, S., Adrover, A., Garofalo, F. et al. Spectral characterization of mixing properties of annular MHD micromixers. Microfluid Nanofluid 6, 747–761 (2009). https://doi.org/10.1007/s10404-008-0342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-008-0342-0

Keywords

Navigation