Skip to main content
Log in

Campylobacter Shared Between Free-Ranging Cattle and Sympatric Wild Ungulates in a Natural Environment (NE Spain)

  • Original Contribution
  • Published:
EcoHealth Aims and scope Submit manuscript

Abstract

Campylobacter infections are a public health concern and an increasingly common cause of food-borne zoonoses in the European Union. However, little is known about their spill-over from free-ranging livestock to sympatric wild ungulates, especially in regards to uncommon Campylobacter species. In this study, we aim to determine the prevalence of C. coli, C. jejuni and other C. spp. in game ungulates (wild boar Sus scrofa and Iberian ibex Capra pyrenaica) and free-ranging sympatric cattle in a National Game Reserve in NE Spain. Furthermore, we explore the extent to which Campylobacter species are shared among these co-habiting hosts. Faecal samples from Iberian ibex (n = 181) were negative for C. spp. By direct plating, two wild boars out of 150 were positive for C. coli (1.3%, 95% CI 0.16–4.73), and one was positive for C. jejuni (0.67%, 95% CI 0.02–3.66). The latter was predominant in cattle: 5.45% (n = 55, 95% CI 1.14–5.12), while C. coli was not isolated from this host. C. lanienae was the most frequent species in wild boar at 10% (95% CI 5.7–15.96), and one cow cohabiting with positive wild boars in the same canyon also carried C. lanienae. Four enrichment protocols (using Bolton or Preston broth combined with either mCCDA or CFA) were added for 172 samples (57 from wild boars, 55 cattle and 60 Iberian ibexes) to increase the number of isolates obtained allowing the detection of statistically significant differences. The prevalence of C. lanienae was statistically significantly higher in wild boar than in cattle (P < 0.01), but the prevalence of C. jejuni was higher in the latter (P = 0.045). These results suggest that wild boar and cattle carry their own predominant Campylobacter species, while Iberian ibex do not seem to play an important role in the epidemiology of Campylobacter. However, there is a potential spill-over of C. spp., and thus, further research is needed to elucidate the factors determining inter-species transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Ahmed MF, Schulz J, Hartung J. (2013) Survival of Campylobacter jejuni in naturally and artificially contaminated laying hen feces. Poultry Science 92:364-369

    Article  CAS  PubMed  Google Scholar 

  • Atanassova V, Apelt J, Reich F, Klein G. (2008) Microbiological quality of freshly shot game in Germany. Meat Science 78:414-419

    Article  CAS  PubMed  Google Scholar 

  • Chaban B, Chu S, Hendrick S, Waldner C, Hill JE. (2012) Evaluation of a Campylobacter fetus subspecies venerealis real-time quantitative polymerase chain reaction for direct analysis of bovine preputial samples. Canadian Journal of Veterinary Research-Revue Canadienne De Recherche Veterinaire 76:166-173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Colles FM, Dingle KE, Cody AJ, Maiden MCJ. (2008) Comparison of Campylobacter populations in wild geese with those in starlings and free-range poultry on the same farm. Applied and Environmental Microbiology 74:3583-3590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Colles FM, Ali JS, Sheppard SK, McCarthy ND, Maiden MCJ. (2011) Campylobacter populations in wild and domesticated Mallard ducks (Anas platyrhynchos). Environmental Microbiology Reports 3:574-580

    Article  PubMed Central  PubMed  Google Scholar 

  • Craven S, Stern N, Line E, Bailey J, Cox N, Fedorka-Cray P. (2000) Determination of the incidence of Salmonella spp., Campylobacter jejuni, and Clostridium perfringens in wild birds near broiler chicken houses by sampling intestinal droppings. Avian Diseases 44:715-720

    Article  CAS  PubMed  Google Scholar 

  • Davis L, DiRita V (2008) Growth and laboratory maintenance of Campylobacter jejuni. Current Protocols in Microbiology 8:8A.1.1–8A.1.7

    Google Scholar 

  • Diaz-Sanchez S, Sanchez S, Herrera-Leon S, Porrero C, Blanco J, Dahbi G, et al. (2013) Prevalence of Shiga toxin-producing Escherichia coli,Salmonella spp. and Campylobacter spp. in large game animals intended for consumption: Relationship with management practices and livestock influence. Veterinary microbiology 163:274-81

    Article  CAS  PubMed  Google Scholar 

  • EFSA Panel on Biological Hazards (BIOHAZ). (2012) Scientific Opinion on a review on the European Union Summary reports on trends and sources zoonoses, zoonotic agents and food-borne outbreaks in 2009 and 2010—specifically for the data on Salmonella, Campylobacter, verotoxigenic Escherichia coli, Listeria monocytogenes and foodborne outbreaks. EFSA Journal 10:2726

    Google Scholar 

  • Engberg J, On SLW, Harrington CS, Gerner-Smidt P. (2000) Prevalence of Campylobacter, Arcobacter, Helicobacter, and Sutterella spp. in human fecal samples as estimated by a reevaluation of isolation methods for Campylobacters. Journal of clinical microbiology 38:286-291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ethelberg S, Simonsen J, Gerner-Smidt P, Olsen KEP, Molbak K. (2005) Spatial distribution and registry-based case-control analysis of Campylobacter infections in Denmark, 1991-2001. American Journal of Epidemiology 162:1008-1015

    Article  PubMed  Google Scholar 

  • Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO) (2009) Risk Assessment of Campylobacter spp. in Broiler Chickens: Interpretative Summary, vol. 11. Microbiological Risk Assessment Series No. 11, p 35

  • Gorkiewicz G, Feierl G, Schober C, Dieber F, Kofer J, Zechner R, Zechner EL (2003) Species-specific identification of campylobacters by partial 16S rRNA gene sequencing. Journal of Clinical Microbiology 41:2537-2546

    Google Scholar 

  • Hald B, Skovgard H, Bang D, Pedersen K, Dybdahl J, Jespersen J, et al. (2004) Flies and Campylobacter infection of broiler flocks. Emerging Infectious Diseases 10:1490-1492

    Article  PubMed Central  PubMed  Google Scholar 

  • Humphrey T, O’Brien S, Madsen M. (2007) Campylobacters as zoonotic pathogens: A food production perspective. International journal of food microbiology 117:237-257

    Article  PubMed  Google Scholar 

  • Inglis GD, Kalischuk LD, Busz HW, Kastelic JP. (2005) Colonization of cattle intestines by Campylobacter jejuni and Campylobacter lanienae. Applied and Environmental Microbiology 71:5145-5153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iraola G, Hernandez M, Calleros L, Paolicchi F, Silveyra S, Velilla A, et al. (2012) Application of a multiplex PCR assay for Campylobacter fetus detection and subspecies differentiation in uncultured samples of aborted bovine fetuses. Journal of Veterinary Science 13:371-376

    Article  PubMed Central  PubMed  Google Scholar 

  • Jay-Russell MT, Bates A, Harden L, Miller WG, Mandrell RE. (2012) Isolation of Campylobacter from Feral Swine (Sus scrofa) on the Ranch Associated with the 2006 Escherichia coli O157:H7 Spinach Outbreak Investigation in California. Zoonoses and Public Health 59:314-319

    Article  CAS  PubMed  Google Scholar 

  • Jones TR, Lahuerta-Marin A, Begon ME, Bennett M, Hart CA, Williams NJ. (2007) A cross-sectional study of Campylobacter species isolated from cattle and wildlife on farms in Cheshire, UK. Zoonoses and Public Health 54:131-131

    Article  Google Scholar 

  • Karenlampi R, Rautelin H, Schonberg-Norio D, Paulin L, Hanninen M. (2007) Longitudinal study of Finnish Campylobacter jejuni and C-coli isolates from humans, using multilocus sequence typing, including comparison with epidemiological data and isolates from poultry and cattle. Applied and Environmental Microbiology 73:148-155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawasaki S, Fratamico PA, Wesley IV, Kawamotol S. (2008) Species-Specific Identification of Campylobacters by PCR-Restriction Fragment Length Polymorphism and PCR Targeting of the Gyrase B Gene. Applied and Environmental Microbiology 74:2529-2533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kemper N, Aschfalk A, Holler C. (2006). Campylobacter spp., Enterococcus spp., Escherichia coli, Salmonella spp., Yersinia spp., and Cryptosporidium Oocysts in Semi-Domesticated Reindeer (Rangifer tarandus tarandus) in Northern Finland and Norway. Acta Veterinaria Scandinavica 48:7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lawson PA, Gharbia SE, Shah HN, Clark DR. (1989) Recognition of Fusobacterium nucleatum subgroups Fn-1, Fn-2 and Fn-3 by ribosomal RNA gene restriction patterns. FEMS microbiology letters 53:41-5

    Article  CAS  PubMed  Google Scholar 

  • Leblanc Maridor M, Denis M, Lalande F, Beaurepaire B, Cariolet R, Fravalo P, et al. (2008) Experimental infection of specific pathogen-free pigs with Campylobacter: excretion in faeces and transmission to non-inoculated pigs. Veterinary Microbiology 131:309-317

    Article  PubMed  Google Scholar 

  • Lee K, Iwata T, Nakadai A, Kato T, Hayama S, Taniguchi T, et al. (2011) Prevalence of Salmonella, Yersinia and Campylobacter spp. in Feral Raccoons (Procyon lotor) and Masked Palm Civets (Paguma larvata) in Japan. Zoonoses and Public Health 58:424-431

    Article  CAS  PubMed  Google Scholar 

  • Lillehaug A, Bergsjo B, Schau J, Bruheim T, Vikoren T, Handeland K. (2005) Campylobacter spp., Salmonella spp., Verocytotoxic Escherichia coli, and Antibiotic Resistance in Indicator Organisms in Wild Cervids. Acta Veterinaria Scandinavica 46: 23-32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Man SM. (2011) The clinical importance of emerging Campylobacter species. Nature Reviews Gastroenterology & Hepatology 8:669-685

    Article  CAS  Google Scholar 

  • Meerburg B, Jacobs-Reitsma W, Wagenaar J, Kijlstra A. (2006) Presence of Salmonella and Campylobacter spp. in wild small mammals on organic farms. Applied and Environmental Microbiology 72:960-962

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mentaberre G, Serrano E, Velarde R, Marco I, Lavin S, Mateos A, et al. (2010) Absence of TB in Iberian ibex (Capra pyrenaica) in a high-risk area. Veterinary Record 166:700

    Article  PubMed  Google Scholar 

  • Miller WG, Chapman MH, Yee E, On SLW, McNulty DK, Lastovica AJ, et al. (2012) Multilocus Sequence Typing Methods for the Emerging Campylobacter Species C. hyointestinalis, C. lanienae, C. sputorum, C. concisus, and C. curvus. Frontiers in Cellular and Infection Microbiology 2:45

    Article  PubMed Central  PubMed  Google Scholar 

  • Ministerio de Agricultura, Alimentación y Medio Ambiente. (2013) Estadística anual de caza. http://www.magrama.gob.es/es/biodiversidad/estadisticas/est_anual_caza.aspx. Accessed February 28, 2013

  • Musgrove MT, Berrang ME, Byrd JA, Stern NJ, Cox NA. (2001) Detection of Campylobacter spp. in ceca and crops with and without enrichment. Poultry science 80:825-828

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Gonzalez N, Mentaberre G, Porrero CM, Serrano E, Mateos A, Lopez-Martin JM, et al. (2012) Effect of Cattle on Salmonella Carriage, Diversity and Antimicrobial Resistance in Free-Ranging Wild Boar (Sus scrofa) in Northeastern Spain. PloS one 7:e51614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Navarro-Gonzalez N, Velarde R, Porrero MC, Mentaberre G, Serrano E, Mateos A et al (in press) Lack of evidence of spill-over of Salmonella enterica between cattle and sympatric Iberian ibex (Capra pyrenaica) from a protected area in Catalonia, NE Spain. Transboundary and Emerging Diseases. doi:10.1111/tbed.12037

  • Newell DG, Shreeve JE, Toszeghy M, Domingue G, Bull S, Humphrey T. et al. (2001) Changes in the carriage of Campylobacter strains by poultry carcasses during processing in abattoirs. Applied and Environmental Microbiology 67, 2636-2640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olson CK, Ethelberg S, van Pelt W, Tauxe RV (2008) Epidemiology of Campylobacter jejuni Infections in Industrialized Nations, 3rd ed. Campylobacter. ASM Press, Washington, DC, pp 163–189

  • Oporto B, Hurtado A. (2011) Emerging Thermotolerant Campylobacter Species in Healthy Ruminants and Swine. Foodborne Pathogens and Disease 8:807-813

    Article  PubMed  Google Scholar 

  • Pires SM, Vigre H, Makela P, Hald T. (2010) Using Outbreak Data for Source Attribution of Human Salmonellosis and Campylobacteriosis in Europe. Foodborne Pathogens and Disease 7:1351-1361

    Article  PubMed  Google Scholar 

  • R Development Core Team 3.0.2. (2013) A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org. Accessed July 2, 2013

  • Rapp D, Ross CM, Pleydell EJ, Muirhead RW. (2012) Differences in the fecal concentrations and genetic diversities of Campylobacter jejuni populations among individual cows in two dairy herds. Applied and Environmental Microbiology. 78:7564-7571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schilling A, Hotzel H, Methner U, Sprague LD, Schmoock G, El-Adawy H, et al. (2012) Zoonotic Agents in Small Ruminants Kept on City Farms in Southern Germany. Applied and Environmental Microbiology 78:3785-3793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sippy R, Sandoval-Green CMJ, Sahin O, Plummer P, Fairbanks WS, Zhang Q, et al. (2012) Occurrence and molecular analysis of Campylobacter in wildlife on livestock farms. Veterinary Microbiology 157:369-375

    Article  CAS  PubMed  Google Scholar 

  • Stevenson M, Nunes T, Sanchez J, Thornton R, Reiczigel J, Robison-Cox J et al. (2012) epiR: An R Package for the Analysis of Epidemiological Data. R package version 0.9-43. http://CRAN.R-project.org/package=epiR. Accessed May 14, 2012

  • Strachan NJ, Rotariu O, Smith-Palmer A, Cowden J, Sheppard SK, O’Brien SJ, et al. (2013) Identifying the seasonal origins of human campylobacteriosis. Epidemiology and Infection 141:1267-1275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ugarte-Ruiz M, Gomez-Barrero S, Porrero MC, Alvarez J, Garcia M, Comeron MC, et al. (2012) Evaluation of four protocols for the detection and isolation of thermophilic Campylobacter from different matrices. Journal of Applied Microbiology 113:200-208

    Article  CAS  PubMed  Google Scholar 

  • Ugarte-Ruiz M, Wassenaar TM, Gómez-Barrero S, Porrero MC, Navarro-Gonzalez N, Domínguez L. (2013) The effect of different isolation protocols on detection and molecular characterization of Campylobacter from poultry. Letters in Applied Microbiology 57:427-435

    Article  CAS  PubMed  Google Scholar 

  • Wacheck S, Fredriksson-Ahomaa M, Konig M, Stolle A, Stephan R. (2010) Wild Boars as an Important Reservoir for Foodborne Pathogens. Foodborne Pathogens and Disease 7:307-312

    Article  CAS  PubMed  Google Scholar 

  • Wahlstrom H, Tysen E, Engvall EO, Brandstrom B, Eriksson E, Morner T, et al. (2003) Survey of Campylobacter species, VTEC O157 and Salmonella species in Swedish wildlife. Veterinary Record 153:74-80

    Article  CAS  PubMed  Google Scholar 

  • Whiley H, van den Akker B, Giglio S, Bentham R. (2013) The role of environmental reservoirs in human campylobacteriosis. International Journal of Environmental Research and Public Health 10:5886-5907.

    Article  PubMed Central  PubMed  Google Scholar 

  • Williams LK, Sait LC, Cogan TA, Jorgensen F, Grogono-Thomas R. and Humphrey, T.J. (2012) Enrichment culture can bias the isolation of Campylobacter subtypes. Epidemiology and Infection 140, 1227-1235

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Harayama S. (1996) Phylogenetic Analysis of Acinetobacter Strains Based on the Nucleotide Sequences of gyrB Genes and on the Amino Acid Sequences of their Products. International Journal of Systematic and Evolutionary Microbiology 46:506-511

    CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. Anabel Vela for her support and assessment on preliminary drafts of this manuscript. We also express our gratitude to the Departament d’Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural of the Generalitat de Catalunya for supporting our research activity. We are also very thankful to the staff of the National Game Reserve and the Natural Park Els Ports de Tortosa i Beseit for its valuable help in the sampling and gathering information on the location of the herds. The authors wish to thank our technicians María García, Estefanía Rivero and Carolina Castilla for their excellent work at the Foodborne Zoonoses and Antibiotic Resistance Unit. This work was partially supported by the Ministry of Science and Innovation within the Programme of Interaction between wild animals and livestock (FAU2008-00021) and by the Autonomous Community of Madrid, Spain (S0505/AGR-0265; S2009/AGR-1489). N. Navarro-Gonzalez and M. Ugarte-Ruiz were supported by the FPU program from the Ministerio de Educación (Spain) and E. Serrano by the Beatriu de Pinós programme (BP-DGR 2011) of the Catalan Science and Technology System (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Domínguez.

Additional information

N. Navarro-Gonzalez and M. Ugarte-Ruiz contributed equally to this work and should be considered as co-first author.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navarro-Gonzalez, N., Ugarte-Ruiz, M., Porrero, M.C. et al. Campylobacter Shared Between Free-Ranging Cattle and Sympatric Wild Ungulates in a Natural Environment (NE Spain). EcoHealth 11, 333–342 (2014). https://doi.org/10.1007/s10393-014-0921-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-014-0921-3

Keywords

Navigation