Skip to main content
Log in

Medikamentöse Behandlung chronischer Venenerkrankungen

Drug Treatment of Chronic Venous Diesease

  • themenschwerpunkt
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Chronische Venenerkrankungen (CVE) betreffen zumindest 15–25 % der Allgemeinbevölkerung und sind nicht nur mit hoher Morbidität, sondern auch mit beträchtlichen finanziellen Belastungen verbunden. Die moderne CVE-Behandlung stützt sich vor allem auf endovenöse therapeutische Verfahren und Kompressionstherapie. Je mehr Einblicke wir allmählich in die Pathogenese der CVE gewinnen, desto mehr steigt auch das Interesse an Arzneimitteln, die diesen Prozess beeinflussen können. Nachfolgend finden Sie einen Überblick über die meisten oralen Präparate, die derzeit zur Behandlung von CVE (einschließlich venöser Beingeschwüre) eingesetzt werden. Nach mehreren Jahrzehnten klinischer Verwendung liegen für einige Flavonoidpräparate, in erster Linie für MPFF (mikronisierte gereinigte Flavonoidfraktion), genügend Nachweise vor, um sie als kurzfristige Zusatzbehandlung bei CVE empfehlen zu können. Andere Verbindungen sind jedoch diesbezüglich ebenfalls äußerst vielversprechend. Dennoch benötigen wir mehr umfassendere klinische Studien über einen längeren Zeitraum hinweg, um Wirkung, Kosteneffizienz und vor allem eine mögliche prophylaktische Anwendung dieser Medikamente genauer definieren zu können. Mehr über die Grundlagen von CVE zu erfahren hilft uns bei der Entwicklung neuer Arzneimittel, die auf spezielle Aspekte des Erkrankungsprozesses ausgerichtet sind.

Summary

Chronic venous disease (CVD) affects at least 15–25 % of the general population incurring not only high morbidity but also considerable economical burden. The mainstay of modern treatment of CVD are endovenous therapeutic procedures and compression therapy. As far as the pathogenesis of CVD is being gradually unraveled the interest in drugs able to impact the process is growing. Here we have presented an overview of a majority of oral preparations used so far to treat CVD including venous leg ulcers. After several decades of clinical use a few flavonoid preparations, in the first place micronized purified flavonoid fraction, collected enough evidence to recommend them as a short-term adjunct treatment of CVD. However, other compounds are also promising in this regards. Yet, we need more larger and longer-term clinical trials to more precisely define effects, cost-effectiveness and, above all, capacity for prophylactic application of the drugs. Learning more about basis of CVD will help design new drugs directed at specific aspects of the disease process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Perrin M, Ramelet AA. Pharmacological treatment of primary chronic venous disease: rationale, results and unanswered questions. Eur J Vasc Endovasc Surg. 2011;41:117–25.

    Article  CAS  PubMed  Google Scholar 

  2. Anwar MA, Georgiadis KA, Shalhoub J, et al. A review of familial, genetic, and congenital aspects of primary varicose vein disease. Circ Cardiovasc Genet. 2012;5:460–6.

    Article  PubMed  Google Scholar 

  3. Lim C, Davies A. Pathogenesis of primary varicose veins. Br J Surg. 2009;96:1231–42.

    Article  CAS  PubMed  Google Scholar 

  4. Brunner F, Hoffmann C, Schuller-Petrović S. Responsiveness of human varicose saphenous veins to vasoactive agents. Br J Clin Pharmacol. 2001;51:219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rabe E, Guex JJ, Morrison N, et al. Treatment of chronic venous disease with flavonoids: recommendations for treatment and further studies. Phlebology. 2013;28:308–19.

    Article  CAS  PubMed  Google Scholar 

  6. Farinola N, Piller N. Pharmacogenomics – its role in re-establishing coumarin as treatment for lymphedema. Lymphat Res Biol. 2005;3:81–6.

    Article  CAS  PubMed  Google Scholar 

  7. Hadjipavlou-Litina D, Kontogiorgis C, Pontiki E, et al. Anti-inflammatory and antioxidant activity of coumarins designed as potential fluorescent zinc sensors. J Enzyme Inhib Med Chem. 2007;22:287–92.

    Article  CAS  PubMed  Google Scholar 

  8. Cardoso SH, Barreto MB, Lourenco MC, et al. Antitubercular activity of new coumarins. Chem Biol Drug Des. 2011;77:489–93.

    Article  CAS  PubMed  Google Scholar 

  9. Lee S, Sivakumar K, Shin WS, et al. Synthesis and antiangiogenesis activity of coumarin derivatives. Bioor Med Chem Lett. 2006;16:4596–9.

    Article  CAS  Google Scholar 

  10. Gupta S, Singh S, Kathuria A, et al. Ammonium derivatives of chromenones and quinolinones as lead antimicrobial agents. J Chem Sci. 2012;124:437–49.

    Article  CAS  Google Scholar 

  11. Lin MH, Cheng CH, Chen KC, et al. Induction of ROS-independent JNK-activation-mediated apoptosis by a novel coumarin-derivative, DMAC, in human colon cancer cells. Chem Biol Interact. 2014;218:42–9.

    Article  CAS  PubMed  Google Scholar 

  12. Casley-Smith JR, Morgan RG, Piller NB. Treatment of lymphedema of the arms and legs with 5,6-benzo-[alpha]-pyrone. N Engl J Med. 1993;329:1158–63.

    Article  CAS  PubMed  Google Scholar 

  13. Casley-Smith JR, Wang CT, Casley-Smith JR, et al. Treatment of filarial lymphoedema and elephantiasis with 5,6-benzo-alpha-pyrone (coumarin). BMJ. 1993;307:1037–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vanscheidt W, Rabe E, Naser-Hijazi B, et al. The efficacy and safety of a coumarin-/troxerutin-combination (SB-LOT) in patients with chronic venous insufficiency: a double blind placebo-controlled randomised study. Vasa. 2002;31:185–90.

    Article  CAS  PubMed  Google Scholar 

  15. Badger C, Preston N, Seers K, et al. Benzo-pyrones for reducing and controlling lymphoedema of the limbs. Cochrane Database Syst Rev. 2004;2:CD003140.

    PubMed  Google Scholar 

  16. Kinonen T, Pasanen M, Gynther J, et al. Competitive inhibition of coumarin 7-hydroxylation by pilocarpine and its interaction with mouseCYP 2A5 and human CYP 2A6. Br J Pharmacol. 1995;116:2625–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chinembiri TN, du Plessis LH, Gerber M, et al. Review of Natural Compounds for Potential Skin Cancer Treatment. Molecules. 2014;19:11679–721.

    Article  PubMed  Google Scholar 

  18. Raffetto JD, Khalil RA. Ca2+-dependent contraction by the saponoside escin in rat vena cava: Implications in venotonic treatment of varicose veins . J Vasc Surg. 2011;54:489–96.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lim CS, Kiriakidis S, Paleolog EM, et al. The effects of doxycycline and micronized purified flavonoid fraction on human vein wall remodeling are not hypoxia-inducible factor pathway-dependent. J Vasc Surg. 2012;56:1069–77.

    Article  PubMed  Google Scholar 

  20. Allaert FA. Meta-analysis of the impact of the principal venoactive drugs agents on malleolar venous edema. Int Angiol. 2012;31:310–5.

    CAS  PubMed  Google Scholar 

  21. Scallon C, Bell-Syer SE, Aziz Z. Flavonoids for treating venous leg ulcers. Cochrane Database Syst Rev. 2013;31(5):CD006477 doi:10.1002/14651858.CD006477.pub2.

    Google Scholar 

  22. Ippolito E, Belcaro G, Dugall M, et al. Venoruton®: post thrombotic syndrome. Clinical improvement in venous insufficiency (signs and symptoms) with Venoruton®. A five-year, open-registry, efficacy study. Panminerva Med 2011; 53(3 Suppl 1): 13–9.

  23. Gulati, OP. Pycnogenol® in chronic venous insufficiency and related venous disorders. Phytother Res. 2014;28:348–62.

    Article  PubMed  Google Scholar 

  24. Schoonees A, Visser J, Musekiwa A, et al. Pycnogenol® (extract of French maritime pine bark) for the treatment of chronic disorders. Cochrane Database Syst Rev. 2012;18(4):CD008294 doi:10.1002/14651858.CD008294.pub4.

    Google Scholar 

  25. Felixsson E, Persson IA, Eriksson AC, et al. Horse chestnut extract contracts bovine vessels and affects human platelet aggregation through 5‑HT(2A) receptors: an in vitro study. Phytother Res. 2010;24:1297–301.

    Article  CAS  PubMed  Google Scholar 

  26. Luís A, Domingues F, Duarte AP. Bioactive compounds, RP-HPLC analysis of phenolics, and antioxidant activity of some Portuguese shrub species extracts. Nat Prod Commun. 2011;6:1863–72.

    PubMed  Google Scholar 

  27. Pittler MH, Ernst E. Horse chestnut seed extract for chronic venous insufficiency. Cochrane Database Syst Rev. 2012;14(11):CD003230 doi:10.1002/14651858.CD003230.pub4.

    Google Scholar 

  28. Cesarone MR, Incandela L, De Sanctis MT, et al. Flight microangiopathy in medium- to long-distance flights: prevention of edema and microcirculation alterations with total triterpenic fraction of Centella asiatica. Angiology. 2001;52(Suppl 2):S33–7.

    PubMed  Google Scholar 

  29. Arpaia MR, Ferrone R, Amitrano M, et al. Effects of Centella asiatica extract on mucopolysaccharide metabolism in subjects with varicose veins. Int J Clin Pharmacol Res. 1990;10:229–33.

    CAS  PubMed  Google Scholar 

  30. Janssens D, Michiels C, Guillaume G, et al. Increase in circulating endothelial cells in patients with primary chronic venous insufficiency: protective effect of Ginkor Fort in a randomized double-blind, placebo-controlled clinical trial. J Cardiovasc Pharmacol. 1999;33:7–11.

    Article  CAS  PubMed  Google Scholar 

  31. Arnould T, Michiels C, Janssens D, et al. Effect of Ginkor Fort on hypoxia-induced neutrophil adherence to human saphenous vein endothelium. J Cardiovasc Pharmacol. 1998;31:456–63.

    Article  CAS  PubMed  Google Scholar 

  32. Romero-Cerecero O, Zamilpa-Álvarez A, Jiménez-Ferrer E, et al. Exploratory study on the effectiveness of a standardized extract from Ageratina pichinchensis in patients with chronic venous leg ulcers. Planta Med. 2012;78:304–10.

    Article  CAS  PubMed  Google Scholar 

  33. Gohel MS, Davies AH. Pharmacological treatment in patients with C4, C5 and C6 venous disease. Phlebology. 2010;25(Suppl 1):35–41.

    Article  PubMed  Google Scholar 

  34. Tejerina T, Ruiz E. Calcium dobesilate: pharmacology and future approaches. Gen Pharmacol. 1998;31:357–60.

    Article  CAS  PubMed  Google Scholar 

  35. Suschek C, Kolb H, Kolb-Bachofen V. Dobesilate enhances endothelial nitric oxide synthase-activity in macro- and microvascular endothelial cells. Br J Pharmacol. 1997;122:1502–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Piller NB. The lymphogogue action of calcium dobesilate on the flow of lymph from the thoracic duct of anesthetized and mobile guinea pigs. Lymphology. 1988;21:124–7.

    CAS  PubMed  Google Scholar 

  37. Angulo J, Peiró C, Romacho T, Fernández A, et al. Inhibition of vascular endothelial growth factor (VEGF)-induced endothelial proliferation, arterial relaxation, vascular permeability and angiogenesis by dobesilate. Eur J Pharmacol. 2011;667:153–9.

    Article  CAS  PubMed  Google Scholar 

  38. Alda O, Valero MS, Pereboom D, et al. In vitro effect of calcium dobesilate on oxidative/inflammatory stress in human varicose veins. Phlebology. 2011;26:332–7.

    Article  CAS  PubMed  Google Scholar 

  39. Iriz E, Vural C, Ereren E, et al. Effects of calcium dobesilate and diosmin-hesperidin on apoptosis of venous wall in primary varicose veins. Vasa. 2008;37:233–40.

    Article  CAS  PubMed  Google Scholar 

  40. Martínez-Zapata MJ, Moreno RM, Gich I, et al. A randomized, double-blind multicentre clinical trial comparing the efficacy of calcium dobesilate with placebo in the treatmentof chronic venous disease. Eur J Vasc Endovasc Surg. 2008;35:358–65.

    Article  PubMed  Google Scholar 

  41. Rabe E, Jaeger KA, Bulitta M, et al. Calcium dobesilate in patients suffering from chronic venous insufficiency: a double-blind, placebo-controlled, clinical trial. Phlebology. 2011;26:162–8.

    Article  CAS  PubMed  Google Scholar 

  42. Akbulut B. Calcium dobesilate and oxerutin: effectiveness of combination therapy. Phlebology. 2010;25:66–71.

    Article  CAS  PubMed  Google Scholar 

  43. Ibáñez L, Vidal X, Ballarín E, et al. Population-based drug-induced agranulocytosis. Arch Intern Med. 2005;165:869–74.

    Article  PubMed  Google Scholar 

  44. Raetsch C, Jia JD, Boigk G, et al. Pentoxifylline downregulates profibrogenic cytokines and procollagen I expression in rat secondary biliary fibrosis. Gut. 2002;50:241–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bahra PS, Rainger GE, Wautier JL, et al. Effects of pentoxifylline on the different steps during adhesion and transendothelial migration of flowing neutrophils. Cell Biochem Funct. 2001;19:249–57.

    Article  CAS  PubMed  Google Scholar 

  46. Maessen-Visch MB, de Roos KP. Dutch Venous Ulcer guideline update. Phlebology 2014; 29(1 suppl): 153–156.

  47. Jull AB, Arroll B, Parag V, et al. Pentoxifylline for treating venous leg ulcers. Cochrane Database Syst Rev. 2012;12(12):CD001733 doi:10.1002/14651858.CD001733.pub3.

    PubMed  Google Scholar 

  48. Babany G, Larrey D, Pessayre D, et al. Chronic active hepatitis caused by benzarone. J Hepatol. 1987;5:332–5.

    Article  CAS  PubMed  Google Scholar 

  49. Hautekeete ML, Henrion J, Naegels S, et al. Severe hepatotoxicity related to benzarone: a report of three cases with two fatalities. Liver. 1995;15:25–9.

    Article  CAS  PubMed  Google Scholar 

  50. Winand R. Beta-naphthoquinone mono-semicarbarzone-2 (DCI naftazone) in varicose disease [in French. Rev Med Liege. 1977;32:429–31.

    CAS  PubMed  Google Scholar 

  51. Klein-Soyer C, Bloy C, Archipoff G, et al. Naftazone accelerates human saphenous vein endothelial cell proliferation in vitro. Nouv Rev Fr Hematol. 1995;37:187–92.

    CAS  PubMed  Google Scholar 

  52. Agha AM, Gad MZ. Lipid peroxidation and lysosomal integrity in different inflammatory models in rats: the effects of indomethacin and naftazone. Pharmacol Res. 1995;32:279–85.

    Article  CAS  PubMed  Google Scholar 

  53. Sogni P, Yang S, Pilette C, et al. Acute and chronic haemodynamic effects of naftazone in portal hypertensive rats. Eur J Pharmacol. 1998;344:37–43.

    Article  CAS  PubMed  Google Scholar 

  54. McGregor L, Chignier E, Bloy C, et al. Effect of naftazone on in vivo platelet function in the rat. Platelets. 1999;10:66–70.

    Article  CAS  PubMed  Google Scholar 

  55. Durand P, Bloy C, Peltier-Pujol F, et al. In-vitro and ex-vivo inhibition of blood platelet aggregation by naftazone. J Pharm Pharmacol. 1996;48:566–72.

    Article  CAS  PubMed  Google Scholar 

  56. Rascol O, Ferreira J, Nègre-Pages L, et al. A proof-of-concept, randomized, placebo-controlled, multiple cross-overs (n-of-1) study of naftazone in Parkinson’s disease. Fundam Clin Pharmacol. 2012;26:557–64.

    Article  CAS  PubMed  Google Scholar 

  57. Pereira de Godoy JM. Aminaphtone in idiopathic cyclic oedema syndrome. Phlebology. 2008;23:118–9.

    Article  CAS  PubMed  Google Scholar 

  58. Scorza R, Santaniello A, Salazar G, et al. Effects of aminaftone 75 mg TID on soluble adhesion molecules: a 12-week, randomized, open-label pilot study in patients with systemic sclerosis. Clin Ther. 2008;30:924–9.

    Article  CAS  PubMed  Google Scholar 

  59. Scorza R, Santaniello A, Salazar G, et al. Aminaftone, a derivative of 4‑aminobenzoic acid, downregulates endothelin-1 production in ECV304 Cells: an in vitro Study. Drugs R D. 2008;9:251–7.

    Article  CAS  PubMed  Google Scholar 

  60. De Anna D, Mari F, Intini S, et al. Effects of therapy with aminaftone on chronic venous and lymphatic stasis. [in Italian. Minerva Cardioangiol. 1989;37:251–4.

    PubMed  Google Scholar 

  61. Belczak SQ, Sincos IR, Campos W, et al. Veno-active drugs for chronic venous disease: A randomized, double-blind, placebo-controlled parallel-design trial. Phlebology. 2014;29:454–60.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš D. Pavlović.

Ethics declarations

Interessenkonflikt

M.D. Pavlović gibt an, dass kein Interessenkonflikt besteht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlović, M.D. Medikamentöse Behandlung chronischer Venenerkrankungen. Wien Med Wochenschr 166, 312–319 (2016). https://doi.org/10.1007/s10354-016-0480-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-016-0480-z

Schlüsselwörter

Keywords

Navigation