Skip to main content

Advertisement

Log in

Diagnosis of anaemia: old things rearranged

Anämiediagnose: alte Zöpfe neu geflochten

  • main topic
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

Anaemia is one of the most leading causes of morbidity and mortality, as declared by the World Health Organisation. This syndrome is characterised by low haemoglobin levels and nonspecific clinical symptoms such as weakness, fatigue and dyspnoea. The symptoms are unspecific as the underlying causes are heterogeneous. Thus, good knowledge of the useful bisickomarkers and their correct assignment is needed to allow rapid and targeted diagnosis.

Zusammenfassung

Laut Weltgesundheitsorganisation ist die Anämie eine der häufigsten Ursachen für Morbidität und Mortalität. Dieses Syndrom ist durch einen erniedrigten Hämoglobinspiegel charakterisiert, sowie durch unspezifische klinische Symptome wie Schwächegefühl, Müdigkeit und Atemnot. So unspezifisch wie die Symptome sind, so unterschiedlich sind die Ursachen für eine Anämie. Daher sind gute Kenntnisse über den richtigen und sinnvollen Einsatz von Biomarkern notwendig, um eine schnelle und zielgerichtete Diagnose stellen zu können.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Serum transferrin (TF) (g/l) = 0.007 ´ Total iron-binding capacity (TIBC) (mg/l)

    TIBC (mg/dl) = TF (mg/dl) ´ 1.41

    TIBC (mmol/l) = TF (g/l) ´ 25.2

    Transferrin saturation (TSAT) (%) = serum iron (mg/dl)/TF (mg/dl) ´ 70.9

    TSAT (%) = serum iron (mmol/l)/TF (mg/dl) ´ 398

References

  1. World Health Organization. Nutritional anaemias: report of a WHO scientific group. WHO Tech Rep Ser. 1968;405:1–40.

    Google Scholar 

  2. Beutler E, Waalen J. The definition of anemia: what is the lower limit of normal of the blood haemoglobin concentration? Blood. 2006;107:1747–50.

    Article  PubMed  CAS  Google Scholar 

  3. Rushton DH, Dover R, Sainsbury AW, et al. Why should women have lower reference limits for haemoglobin and ferritin concentrations than men? BMJ. 2001;322:1355–7.

    Article  PubMed  CAS  Google Scholar 

  4. Waalen J, Felitti V, Beutler E. Haemoglobin and ferritin concentrations in men and women: cross sectional study. BMJ. 2002;325:137.

    Google Scholar 

  5. Milman N, Pedersen AN, Ovesen L, et al. Hemoglobin concentrations in 358 apparently healthy 80-year-old Danish men and women. Should the reference interval be adjusted for age? Aging Clin Exp Res. 2008;20:8–14.

    PubMed  CAS  Google Scholar 

  6. Cheng CK, Chan J, Cembrowski GS, et al. Complete blood count reference interval diagrams derived from NHANES III: stratification by age, sex and race. Lab Hematol. 2004;10:42–53.

    Article  PubMed  Google Scholar 

  7. Navaneethan SD, Bonifati C, Schena FP, et al. Evidence for optimal hemoglobin targets in chronic kidney disease. J Nephrol. 2006;19:640–7.

    PubMed  CAS  Google Scholar 

  8. Dicato M. Venous thromboembolic events and erythropoiesis-stimulating agents: an update. Oncologist. 2008;13:11–5.

    Article  PubMed  CAS  Google Scholar 

  9. Pirker R. Erythropoiesis-stimulating agents in patients with cancer: update on safety issues. Expert Opin Drug Saf. 2009;8:515–22.

    Article  PubMed  CAS  Google Scholar 

  10. Al Diab Al. Cancer-related venous thromboembolism: insight into underestimated risk factors. Hematol Oncol Stem Cell Ther. 2010;3:191–5.

    PubMed  Google Scholar 

  11. Mimoz O, Frasca D, Médard A, et al. Reliability of the HemoCue® hemoglobinometer in critically ill patients: a prospective observational study. Minerva Anestesiol. 2011;77:979–85.

    PubMed  CAS  Google Scholar 

  12. Moreno Chulilla JA, Romero Colás MS, Gutiérrez Martin M. Classification of anemia for gastroenterologists. World J Gastroenterol. 2009;15:4627–37.

    Article  PubMed  CAS  Google Scholar 

  13. Hercberg S, Preziosi P, Galan P. Iron deficiency in Europe. Public Health Nutr. 2001;4:537–45.

    Article  PubMed  CAS  Google Scholar 

  14. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352:1011–23.

    Article  PubMed  CAS  Google Scholar 

  15. Kohne E, Kleihauer E. Hämoglobinopathien—eine Langzeitstudie über vier Jahrzehnte. Dtsch Ärztebl Int. 2010;107:65–71.

    PubMed  Google Scholar 

  16. Galanello R, Origa R. Beta-thalassemia. Orphanet J Rare Dis. 2010;5:11.

    Google Scholar 

  17. Koulaouzidis A, Said E, Cottier R, et al. Soluble Transferrin receptors and iron deficiency, a step beyond ferritin. A systematic review. J Gastrointestin Liver Dis. 2009;18:345–52.

    PubMed  Google Scholar 

  18. Beris P, Munoz M, Garcia-Erce JA, et al. Perioperative anaemia management: consensus statement on the role of intravenous iron. Br J Anaesth. 2008;100:599–604.

    Article  PubMed  CAS  Google Scholar 

  19. Oppenheimer SJ. Iron and its relation to immunity and infectious disease. J Nutr. 2001;131:616S–35S.

    PubMed  CAS  Google Scholar 

  20. Gasche C, Lomer MCE, Cavill I, et al. Iron, anaemia, and inflammatory bowel diseases. Gut. 2004;53:1190–7.

    Article  PubMed  CAS  Google Scholar 

  21. Dale JC, Burritt MF, Zinsmeister AR. Diurnal variation of serum iron, iron-binding capacity, transferrin saturation, and ferritin levels. Am J Clin Pathol. 2002;117:802–8.

    Article  PubMed  CAS  Google Scholar 

  22. Heimpel H, Riedel M, Wennauer R, et al. Die Plasmaeisenbestimmung – nützlich, unnötig oder irreführend? Med Klin. 2003;98:104–7.

    Article  CAS  Google Scholar 

  23. Adams PC, Reboussin DM, Press RD, et al. Biological variability of transferrin saturation and unsaturated iron binding capacity. Am J Med. 2007;120:999.e1–7.

    Google Scholar 

  24. Kasvosve I, Delanghe J. Total iron binding capacity and transferrin concentration in the assessment of iron status. Clim Chem Lab Med. 2002;40:1014–8.

    CAS  Google Scholar 

  25. Coyne D. Iron indices: what do they really mean? Kidney Int. 2006;69:S4–8.

    Article  CAS  Google Scholar 

  26. Wish JB. Assessing iron status: beyond serum ferritin and transferrin saturation. Clin J Am Soc Nephrol. 2006;1:S4–8.

    Article  PubMed  CAS  Google Scholar 

  27. Wang J, Pantopoulos K. Regulation of cellular iron metabolism. Biochem J. 2011;434:365–81.

    Article  PubMed  CAS  Google Scholar 

  28. Formanowicz D, Formanowicz P. Transferrin changes in haemodialysed patients. Int Urol Nephrol. 2012;44:907–19.

    Article  PubMed  CAS  Google Scholar 

  29. Northrop-Clewes CA. Interpreting indicators of iron status during an acute phase response—lessons from malaria and human immunodeficiency virus. Ann Clin Biochem. 2008;45:18–32.

    Article  PubMed  CAS  Google Scholar 

  30. Van Vranken M. Evaluation of microcytosis. Am Fam Physician. 2010;82:1117–22.

    PubMed  Google Scholar 

  31. Arosio P, Levi S. Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochim Biophys Acta. 2010;1800:783–92.

    Article  PubMed  CAS  Google Scholar 

  32. Arosio P, Ingrassia R, Cavadini P. Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta. 2009;1790:589–99.

    Article  PubMed  CAS  Google Scholar 

  33. Cook JD, Lipschitz DA, Miles LEM, et al. Serum ferritin as a measure of iron stores in normal subjects. Am J Clin Nutr. 1974;27:681–7.

    PubMed  CAS  Google Scholar 

  34. Addison GM, Jacobs A, Walwalters GO, et al. Ferritin in serum. Lancet. 1973;20:154–5.

    Article  Google Scholar 

  35. Jacobs A, Worwood M. Ferritin in serum. Clinical and biochemical implications. N Engl J Med. 1975;292:951–6.

    Article  PubMed  CAS  Google Scholar 

  36. Jacobs A, Miller F, Worwood M, et al. Ferritin in the serum of normal subjects and patients with iron deficiency and iron overload. Br Med J. 1972;4:206–8.

    Article  PubMed  CAS  Google Scholar 

  37. Lipschitz DA, Cook JD, Finch CA. A clinical evaluation of serum ferritin as an index of iron stores. N Engl J Med. 1974;290:1213–6.

    Article  PubMed  CAS  Google Scholar 

  38. Munoz M, Villar I, Garcia-Erce JA. An update on iron physiology. World J Gastroenterol. 2009;15:4617–26.

    Article  PubMed  CAS  Google Scholar 

  39. Hallberg L, Bengtsson C, Lapidus L, et al. Screening for iron deficiency: an analysis based on bone-marrow examinations and serum ferritin determinations in a population sample of women. Br J Haematol. 1993;85:787–98.

    Article  PubMed  CAS  Google Scholar 

  40. Stancu S, Stanciu A, Zugravu A, et al. Bone marrow iron, iron indices, and the response to intravenous iron in patients with non-dialysis-dependent CKD. Am J Kidney Dis. 2010;55:639–47.

    Article  PubMed  CAS  Google Scholar 

  41. Rushton DH, Barth JH. What is the evidence for gender differences in ferritin and haemoglobin? Crit Rev Oncol Hematol. 2010;73:1–9.

    Article  PubMed  Google Scholar 

  42. Ruddell RG, Hoang-Le D, Barwood JM, et al. Ferritin functions as a proinflammatory cytokine via iron-independent PKC-z/NFkB-regulated signalling in rat hepatic stellate cells. Hepatology. 2009;49:887–900.

    Article  PubMed  CAS  Google Scholar 

  43. Wang W, Knovich MA, Coffman LG, et al. Serum ferritin: past, present and future. Biochim Biophys Acta. 2010;1800:760–9.

    Article  PubMed  CAS  Google Scholar 

  44. Goodnough LT, Nemeth E, Ganz T. Detection, evaluation, and management of iron-restricted erythropoiesis. Blood. 2010;116:4754–61.

    Article  PubMed  CAS  Google Scholar 

  45. Ong KH, Tan HL, Lai HC, et al. Accuracy of various parameters in the prediction of iron deficiency in an acute care hospital. Ann Acad Med Singapore. 2005;34:437–40.

    PubMed  CAS  Google Scholar 

  46. Koulaouzidis A, Cottier R, Bhat S, et al. A ferritin level > 50 mg/L is frequently consistent with iron deficiency. Eur J Intern Med. 2009;20:168–70.

    Article  PubMed  CAS  Google Scholar 

  47. Feelders RA, Kuiper-Kramer EPA, van Eijk HG. Structure, function and clinical significance of transferrin receptors. Clin Chem Lab Med. 1999;37:1–10.

    Article  PubMed  CAS  Google Scholar 

  48. Speeckaert MM, Speeckaert R, Delanghe JR. Biological and clinical aspects of soluble transferrin receptor. Crit Rev Clin Lab Sci. 2011;47:213–28.

    Article  CAS  Google Scholar 

  49. Munoz M, Garcia-Erce JA, Remacha AF. Disorders of iron metabolism. Part 1: molecular basis of iron homoeostasis. J Clin Pathol. 2011;64:281–6.

    Article  PubMed  CAS  Google Scholar 

  50. Ohnishi K, Torimoto Y, Ikuta K, et al. Detection of soluble HFE associated with soluble transferrin receptor in human serum. Int J Mol Med. 2011;27:435–9.

    PubMed  CAS  Google Scholar 

  51. Skikne BS. Serum transferrin receptor. Am J Hematol. 2008;83:872–5.

    Article  PubMed  CAS  Google Scholar 

  52. Thorpe SJ. The development and role of international biological reference materials in the diagnosis of anaemia. Biologicals. 2010;38:449–58.

    Article  PubMed  Google Scholar 

  53. Thorpe SJ, Heath A, Sharp G, et al. A WHO reference reagent for the serum transferrin receptor (sTfR): international collaborative study to evaluate a recombinant soluble transferrin receptor preparation. Clin Chem Lab Med. 2010;48:815–20.

    Article  PubMed  CAS  Google Scholar 

  54. Thomas C, Thomas L. Biochemical markers and hematologic indices in the diagnosis of functional iron deficiency. Clin Chem. 2002;48:1066–76.

    PubMed  CAS  Google Scholar 

  55. Phiri KS, Calis JCJ, Siyasiya A, et al. New cut-off values for ferritin and soluble transferrin receptor for the assessment of iron deficiency in children in a high infection pressure area. J Clin Pathol. 2009;62:1103–6.

    Article  PubMed  CAS  Google Scholar 

  56. Yang Z, Dewey KG, Lönnerdal B, et al. Comparison of plasma ferritin concentration with the ratio of plasma transferrin receptor to ferritin in estimating body iron stores: results of 4 intervention trials. Am J Clin Nutr. 2008;87:1892–8.

    PubMed  CAS  Google Scholar 

  57. Skikne BS, Punnonen K, Caldron PH, et al. Improved differential diagnosis of anemia of chronic disease and iron deficiency anemia: a prospective multicentre evaluation of soluble transferrin receptor and the sTfR/log ferritin index. Am J Hematol. 2011;86:923–7.

    Article  PubMed  CAS  Google Scholar 

  58. Rimon E, Levy S, Sapir A, et al. Diagnosis of iron deficiency anemia in the elderly by transferrin receptor-ferritin index. Arch Intern Med. 2002;162:445–9.

    Article  PubMed  CAS  Google Scholar 

  59. Genc S, Erten N, Karan MA, et al. Soluble transferrin receptor and soluble transferrin receptor-ferritin index for evaluation of the iron status in elderly patients. Tohoku J Exp Med. 2004;202:135–42.

    Article  PubMed  CAS  Google Scholar 

  60. Munoz M, Garcia-Erce JA, Remacha AF. Disorders of iron metabolism. Part II: iron deficiency and iron overload. J Clin Pathol. 2011;64:287–96.

    Article  PubMed  CAS  Google Scholar 

  61. Leers MPG, Keuren JFW, Oosterhuis WP. The value of the Thomas-plot in the diagnostic work up of anemic patients referred by general practitioners. Int J Lab Hematol. 2010;32:572–81.

    Article  PubMed  CAS  Google Scholar 

  62. Thomas C, Kirschbaum A, Boehm D, et al. The diagnostic plot: a concept for identifying different states of iron deficiency and monitoring the response to epoetin therapy. Med Oncol. 2006;23:23–36.

    Article  PubMed  CAS  Google Scholar 

  63. Thomas C, Thomas L. Anemia of chronic disease: pathophysiology and laboratory diagnosis. Lab Hematol. 2005;11:14–23.

    Article  PubMed  CAS  Google Scholar 

  64. Brugnara C. Iron deficiency and erythropoiesis: new diagnostic approaches. Clin Chem. 2003;49:1573–8.

    Article  PubMed  CAS  Google Scholar 

  65. Steinmetz HT, Tsamaloukas A, Schmitz S, et al. A new concept fort the differential diagnosis and therapy of anaemia in cancer patients. Support Care Cancer. 2010;19:261–9.

    Article  PubMed  Google Scholar 

  66. Katodritou E, Speletas M, Zervas K, et al. Evaluation of hypochromic erythrocytes in combination with sTfR-F index for predicting response to r-HuEPO in anemic patients with multiple myeloma. Lab Hematol. 2006;12:47–54.

    Article  PubMed  Google Scholar 

  67. Young B, Zaritsky J. Hepcidin for clinicians. Clin J Am Soc Nephrol. 2009;4:1384–7.

    Article  PubMed  CAS  Google Scholar 

  68. Thomas C, Kobold U, Thomas L. Serum hepcidin-25 in comparison to biochemical markers and haematological indices for the differentiation of iron-restricted erythropoiesis. Clin Chem Lab Med. 2011;49:207–13.

    Article  PubMed  CAS  Google Scholar 

  69. Ganz T. Hepcidin in its role in regulating systemic iron metabolism. Hematology Am Soc Hematol Educ Program. 2006;507:29–35.

    Article  Google Scholar 

  70. Means RT Jr. Hepcidin and anaemia. Blood Rev. 2004;18:219–25.

    Article  PubMed  Google Scholar 

  71. Pasricha SR, McQuilten Z, Westerman M, et al. Serum hepcidin as a diagnostic test of iron deficiency in premenopausal female blood donors. Haematologica. 2011;96:1099–105.

    Article  PubMed  CAS  Google Scholar 

  72. Thomas C, Kobold U, Balan S, et al. Serum hepcidin-25 may replace the ferritin index in the Thomas plot in assessing iron status in anemic patients. Int J Lab Hem. 2011;33:187–93.

    Article  CAS  Google Scholar 

  73. Lee P, Gelbart T, Waalen J, et al. The anemia of aging is not associated with increased plasma hepcidin levels. Blood Cells Mol Dis. 2008;41:252–4.

    Article  PubMed  CAS  Google Scholar 

  74. Uehata T, Tomosugi N, Shoji T, et al. Serum hepcidin-25 levels and anemia in non-dialysis chronic kidney disease patients: a cross-sectional study. Nephrol Dial Transplant. 2012;27:1076–83.

    Article  PubMed  CAS  Google Scholar 

  75. Guidi GC, Lechi Santonastaso CL. Advancements in anemias related to chronic conditions. Clin Chem Lab Med. 2010;48:1217–26.

    Article  PubMed  CAS  Google Scholar 

  76. Macdougall IC, Malyszko J, Hider RC, et al. Current status of the measurement of blood hepcidin levels in chronic kidney disease. Clin J Am Soc Nephrol. 2010;5:1681–9.

    Article  PubMed  CAS  Google Scholar 

  77. Schwarz P, Strnad P, von Figura G, et al. A novel monoclonal antibody immunoassay for the detection of human serum hepcidin. J Gastroenterol. 2011;46:648–56.

    Article  PubMed  CAS  Google Scholar 

  78. Koliaraki V, Marinou M, Vassilakopoulos TP, et al. A novel immunological assay for hepcidin quantification in human serum. PLoS One. 2009;4:e4581.

    Google Scholar 

  79. Ganz T, Olbina G, Girelli D, et al. Immunoassay for human serum hepcidin. Blood. 2008;112:4292–7.

    Article  PubMed  CAS  Google Scholar 

  80. Rumjon A, Sarafidis P, Brincat S, et al. Serum hemojuvelin and hepcidin levels in chronic kidney disease. Am J Mephrol. 2012;35:295–304.

    Article  CAS  Google Scholar 

  81. Malyszko J. Hemojuvelin: the hepcidin story continues. Kidney Blood Press Res. 2009;32:71–6.

    Article  PubMed  CAS  Google Scholar 

  82. Malyszko J, Malyszko JS, Levin-Iaina N. Is hemojuvelin a possible new player in iron metabolism in hemodialysis patients? Int Urol Nephrol. (in press).

  83. Du X, She E, Gelbart T, et al. The serine protease TMPRSS6 is required to sense iron deficiency. Science. 2008;320:1088–92.

    Article  PubMed  CAS  Google Scholar 

  84. Cau M, Melis MA, Congiu R, et al. Iron-deficiency anemia secondary to mutations in genes controlling hepcidin. Expert Rev Hematol. 2010;3:205–16.

    Article  PubMed  CAS  Google Scholar 

  85. Tettamanti M, Lucca U, Gandini F, et al. Prevalence, incidence and types of mild anaemia in the elderly: the “Health and Anaemia” population-based study. Haematologica. 2010;95:1849–56.

    Article  PubMed  Google Scholar 

  86. Bassett ML, Goulston KJ. False positive and negative hemoccult reactions on a normal diet and effect of diet restriction. Aust N Z J Med. 1980;10:1–4.

    Article  PubMed  CAS  Google Scholar 

  87. Macrae FA, St John DJ, Caligiore P, et al. Optimal dietary conditions for hemoccult testing. Gastroenterology. 1982;82:899–903.

    PubMed  CAS  Google Scholar 

  88. Delco F, Sonnenberg A. Limitations of the faecal occult blood test in screening for colorectal cancer. Ital J Gastroenterol Hepatol. 1999;31:119–26.

    PubMed  CAS  Google Scholar 

  89. Chrostek L, Cylwik B, Grszewska E, et al. The diagnostic power of direct carbohydrate-deficient transferrin immunoassay in alcoholics. Absolute or relative values? Alcohol. 2012;46:69–73.

    Article  PubMed  CAS  Google Scholar 

  90. Marsh JCW, Ball SE, Cavenagh J, et al. Guidelines for the diagnosis and management of aplastic anaemia. Br J Haematol. 2009;147:43–70.

    Article  PubMed  CAS  Google Scholar 

  91. Dhaliwal G, Cornett PA, Tierney LM Jr. Hemolytic anemia. Am Fam Physician. 2004;69:2599–606.

    PubMed  Google Scholar 

  92. Müller A, Zimmermann R, Krause SW. Hemolytic anemias in adults. Dtsch Med Wochenschr. 2011;136:2308–12.

    Article  PubMed  Google Scholar 

  93. Langlois MR, Delanghe JR. Biological and clinical significance of haptoglobin polymorphism in humans. Clin Chem. 1996;42:1589–600.

    PubMed  CAS  Google Scholar 

  94. Gupta S, Ahern K, Nakhl F, et al. Clinical usefulness of haptoglobin levels to evaluate hemolysis in recently transfused patients. Adv Hematol. 2011;2011:389854.

    PubMed  Google Scholar 

  95. Giblett ER. Haptoglobin: a review. Vox Sang. 1961;6:513–24.

    Article  PubMed  CAS  Google Scholar 

  96. Sadrzadeh SM, Bozorgmehr J. Haptoglobin phenotypes in health and disease. Am J Clin Pathol. 2004;121:S97–104.

    PubMed  Google Scholar 

  97. Itzecka J. The biological role of haptoglobin and behaviour of this protein in different diseases, with special attention paid to brain stroke. Ann Univ Mariae Curie Sklodowska Med. 1996;51:115–21.

    Google Scholar 

  98. Kasvosve I, Speeckaert MM, Speeckaert R, et al. Haptoglobin polymorphism and infection. Adv Clin Chem. 2010;50:23–46.

    Article  PubMed  CAS  Google Scholar 

  99. Staals J, Henskens LHG, Delanghe JR, et al. Haptoglobin phenotype correlates with the extent of cerebral deep white matter lesions in hypertensive patients. Curr Neurevasc Res. 2010;7:1–5.

    Article  CAS  Google Scholar 

  100. Kaferle J, Strzoda CE. Evaluation of macrocytosis. Am Fam Physician. 2009;79:203–8.

    PubMed  Google Scholar 

  101. Savage DG, Ogundipe A, Allen RH, et al. Etiology and diagnostic evaluation of macrocytosis. Am J Med Sci. 2000;319:343–52.

    Article  PubMed  CAS  Google Scholar 

  102. Malcovati L, Della Porta MG, Strupp C, et al. Impact of the degree of anemia on the outcome of patients with myelodysplastic syndrome and its integration into the WHO classification-based prognostic scoring System (WPSS). Haematologica. 2011;96:1433–40.

    Article  PubMed  CAS  Google Scholar 

  103. Izaks GJ, Westendorp RGJ, Knook DL. The definition of anemia in older persons. JAMA. 1999;281:1714–7.

    Article  PubMed  CAS  Google Scholar 

  104. Lechner K, Födinger M, Grisold W, et al. Vitamin B12 Mangel: Neue Daten zu einem alten Thema. Wien Klein Wochenschr. 2005;117:579–91.

    Article  CAS  Google Scholar 

  105. Fragasso A, Mannarella C, Ciancio A, et al. Functional vitamin B12 deficiency in alcoholics: an intriguing finding in a retrospective study of megaloblastic anaemic patients. Eur J Intern Med. 2010;21:97–100.

    Article  PubMed  CAS  Google Scholar 

  106. Drammeh BS, Schleicher RL, Pfeiffer CM, et al. Effects of delayed sample processing and freezing on serum concentrations of selected nutritional indicators. Clin Chem. 2008;54:1883–91.

    Article  PubMed  CAS  Google Scholar 

  107. Hustad S, Eussen S, Midttun Ø, et al. Kinetic modelling of storage effects on biomarkers related to B vitamin status and one-carbon metabolism. Clin Chem. 2012;58:402–10.

    Article  PubMed  CAS  Google Scholar 

  108. Varela-Moreiras G, Murphy MM, Scott JM. Cobalamin, folic acid, and homocysteine. Nutr Rev. 2009;67:S69–72.

    Article  PubMed  Google Scholar 

  109. Klee GG. Cobalamin and folate evaluation: measurement of methylmalonic acid and homocysteine vs Vitamin B(12) and folate. Clin Chem. 2000;46:1277–83.

    PubMed  CAS  Google Scholar 

  110. Carmel R, Green R, Rosenblatt DS, et al. Update on cobalamin, folate, and homocystein. Hematology Am Soc Hematol Educ Program. 2003:62–81.

  111. Lindenbaum J. Status of laboratory testing in the diagnosis of megaloblastic anemia. Blood. 1983;61:624–7.

    PubMed  CAS  Google Scholar 

  112. Toh BH, Van Driel IR, Gleeson PA. Pernicious anemia. N Engl J Med. 1997;337:1441–8.

    Article  PubMed  CAS  Google Scholar 

  113. Lahner E, Annibale B. Pernicious anemia: new insights from a gastroenterological point of view. World J Gastroenterol. 2009;15:5121–8.

    Article  PubMed  CAS  Google Scholar 

  114. Presotto F, Sabini B, Cecchetto A, et al. Helicobacter pylori infection and gastric autoimmune diseases: is there a link? Helicobacter. 2003;8:578–84.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The author declares that there is no actual or potential conflict of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Halwachs-Baumann MSc, MBA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halwachs-Baumann, G. Diagnosis of anaemia: old things rearranged. Wien Med Wochenschr 162, 478–488 (2012). https://doi.org/10.1007/s10354-012-0149-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-012-0149-1

Keywords

Schlüsselwörter

Navigation