Skip to main content

Advertisement

Log in

Facies arrangement and cyclostratigraphic architecture of a shallow-marine, warm-water carbonate platform: the Late Carboniferous Ny Friesland Platform in eastern Spitsbergen (Pyefjellet Beds, Wordiekammen Formation, Gipsdalen Group)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

During the Late Carboniferous, a spacious warm-water carbonate platform developed across the eastern part of the present Arctic archipelago of Svalbard. The platform initiated in the Moscovian on an uplifted fault block (Ny Friesland High) and progradated during the Late Moscovian to Early Kasimovian into the adjacent Campbellryggen Basin (central Spitsbergen). The fossiliferous platform strata are characterized by a pronounced cyclicity formed by stacked parasequences, which consist of defined, subtidal to supratidal facies-set successions reflecting a general shallowing of the depositional area. Up to 17 of these shallowing-upward cycles, bounded by distinct discontinuity (marine flooding) surfaces due to the recurrent emersion and subsequent flooding of the platform surface, have been recognized within the platform strata. The stacked cycles are the result of global, glacio-eustatic, high-frequent and high-amplitudinal sea-level fluctuations with eccentricity periodicities caused by ice volume changes during the Gondwana Land glaciation. Based on systematic changes of the cycles (thickness and internal facies composition), the upper part of the platform strata is interpreted as a progradational parasequence set of a late highstand system tract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alekseev AS, Gorbachik TN, Smirnova SB, Bragin NY (1996) Age of the Paramonovo Formation (the Albian of the Russian platform) and global transgressive-regressive cycles of the Cretaceous. Stratigr Geol Correl 4:341–361

    Google Scholar 

  • Baranova DV, Kabanov PB (2003) Facies distribution of fusulinoid genera in the Myachkovian (Upper Carboniferous, Upper Moscovian) of Southern Moscow Region. Rivista Italiana di Paleontologica e Stratigrafia 109:225–239

    Google Scholar 

  • Beauchamp B (1994) Permian climatic cooling in the Canadian Arctic. In: Klein GD (ed) Pangea: paleoclimate, tectonics, and sedimentation during accretion, zenith, and breakup of a supercontinent. Geol Soc Am, 11(1):229–246

  • Beauchamp B, Harrison JC, Henderson CM (1989) Upper Paleozoic stratigraphy and basin analysis of the Sverdrup Basin, Canadian Arctic Archipelago: Part 1 and 2. Current research, Part G, Geol Sur Can, paper 89-1G, pp 105–124

  • Beauchamp B, Desrochers A (1997) Permian warm- to very cold-water carbonates and cherts in northwest Pangea. In: James NP, Clarke JAD (eds) Cool-water carbonates. SEPM, Tulsa, pp 327–347

    Google Scholar 

  • Behrend K (2007) Mikrofaziesanalyse der oberkarbonen Malte Brunfjellet Formation auf Spitzbergen. Bachelor Thesis, University Bremen, Germany

  • Birkenmajer K, Czarniecki S (1960) Stratigraphy of marine Carboniferous and Permian deposits in Hornsund (Vestspitsbergen), based on Brachiopods. Bull Pol Acad Sci. Earth Sci 8:203–209

    Google Scholar 

  • Birkenmajer K (1964) Devonian, Carboniferous and Permian formations of Hornsund, Vestspitsbergen. Studia Geologica Polonica 11:47–123

    Google Scholar 

  • Boardman DR, Heckel PH (1989) Glacial-eustatic sea-level curve for early Late Pennsylvanian sequence in north-central Texas and biostratigraphic correlation with curve for midcontinent North America. Geology 17:802–805

    Article  Google Scholar 

  • Cecchi C, Markello J, Waite L (1995) Sequence stratigraphy architecture of Carboniferous-Permian sedimentary systems of the Norwegian Barents Sea with comparison to coeval systems of the USA. In: Steel RJ, Felt VL, Johannesen EP, Mathieu C (eds) Sequence stratigraphy on the Northwest European Margin. Elsevier, Amsterdam, pp 545–569

    Google Scholar 

  • Coe AL (2005) The sedimentary record of sea-level change. The Open University, Cambridge

    Google Scholar 

  • Cutbill JL (1968) Carboniferous and Permian stratigraphy of Ny Friesland, Spitsbergen. Norsk Polarinstitutt Årbok 1966:12–24

    Google Scholar 

  • Cutbill JL, Challinor A (1965) Revision of the stratigraphical scheme for the Carboniferous and Permian rocks of Spitsbergen and Bjørnøya. Geol Mag 102:418–439

    Google Scholar 

  • Dallmann WK (1993) Notes on the stratigraphy, extent and tectonic implications of the Minkinfjellet Basin, Middle Carboniferous of central Spitsbergen. Polar Res 12:153–160

    Article  Google Scholar 

  • Dallmann WK (1999) Lithostratigraphic lexicon of Svalbard. Norwegian Polar Institute, Tromsø

    Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Forbes CL, Harland WB, Hughes NF (1958) Palaeontological evidence for the age of the Carboniferous and Permian rocks of Central Vestspitsbergen. Geol Mag 95:463–490

    Google Scholar 

  • Forbes CL (1960) Carboniferous and Permian Fusulinidae from Spitsbergen. Palaeontology 2:210–225

    Google Scholar 

  • Gee ER, Harland WB, McWhae JRH (1952) Geology of Central Vestspitsbergen: Part I. Review of the geology of Spitsbergen, with special reference to Central Vestspitsbergen. Part II. Carboniferous to Lower Permian of Billefjorden. Trans R Soc Edinb 62:299–356

    Google Scholar 

  • Gjelberg JG, Steel RJ (1981) An outline of lower-middle Carboniferous sedimentation on Svalbard: effects of tectonic, climatic and sea level changes in rift basin sequences. In: Kerr JW, Fergusson AJ (eds) Geology of the North Atlantic borderlands. Can Soc Petrol Geol, Calgary, pp 543–561

    Google Scholar 

  • Golonka J, Ford D (2000) Pangean (Late Carboniferous-Middle Jurassic) paleoenvironment and lithofacies. Palaeogeogr Palaeoclimatol Palaeoecol 161:1–34

    Article  Google Scholar 

  • Gradstein F, Ogg J, Smith A (2004) A geologic time scale 2004. University Press, Cambridge

    Google Scholar 

  • Halverson GP, Maloof AC, Hoffman PF (2004) The Marinoan glaciation (Neoproterozoic) in northeast Svalbard. Basin Res 16:297–324

    Article  Google Scholar 

  • Harland (1997) The geology of Svalbard. Geol Soc Lond

  • Heckel PH (2006) Latest calibration of Middle to Late Pennsylvanian time scale using succession of Midcontinent cyclothems. Newsl Carboniferous Stratigr 24:35–39

    Google Scholar 

  • Heckel PH, Alekseev AS, Barrick JE, Boardman DR, Goreva NV, Nemyrovska TI (2007) Cyclothem (“digital”) correlation and biostratigraphy across the global Moscovian-Kasimovian-Gzhelian stage boundary interval (Middle-Upper Pennsylvanian) in North America and eastern Europe. Geology 35:607–610

    Article  Google Scholar 

  • Hülse P (2007) Eustatic sea-level changes on a Late Carboniferous carbonate platform in north-eastern Spitsbergen: facies analysis on shallowing-upward cycles. Master Thesis, University München, Germany

  • Hüneke H, Joachimski M, Buggisch W, Lützner H (2001) Marine carbonate facies in response to climate and nutrient level: the Upper Carboniferous and Permian of Central Spitsbergen (Svalbard). Facies 45:93–136

    Article  Google Scholar 

  • Håkansson E, Stemmerik L (1989) Wandel Sea basin-a new synthesis of the late Paleozoic to Tertiary accumulation in North Greenland. Geology 17:683–686

    Article  Google Scholar 

  • Joachimski MM, von Bitter PH, Buggisch W (2006) Constraints on Pennsylvanian glacioeustatic sea-level changes using oxygen isotopes of conodont apatite. Geology 34:277–280

    Article  Google Scholar 

  • Johannessen EP, Steel RJ (1992) Mid-Carboniferous extension and rift-infill sequences in the Billefjorden Trough, Svalbard. Nor Geol Tidsskr 72:35–48

    Google Scholar 

  • Kabanov P (2003) The upper Moscovian and basal Kasimovian (Pennsylvanian) of central European Russia: facies, subaerial exposures and depositional model. Facies 49:243–270

    Google Scholar 

  • Kabanov P, Anadón P, Krumbein WE (2008) Microcodium: an extensive review and a proposed non-rhizogenic biologically induced origin for its formation. Sediment Geol 205:79–99

    Article  Google Scholar 

  • Klappa CF (1978) Biolithogenesis of Microcodium: elucidation. Sedimentology 25:489–522

    Article  Google Scholar 

  • Lauritzen Ø (1981a) Investigations of Carboniferous and Permian sediments in Svalbard I. The development of the Gipshuken Formation (Lower Permian) at Trollfuglfjella in Central Spitsbergen, Svalbard. Nor Polarinst Skr 176:1–22

    Google Scholar 

  • Lauritzen Ø (1981b) Investigations of Carboniferous and Permian sediments in Svalbard II. The Carboniferous and Permian stratigraphy of the Wahlenbergfjorden area, Nordaustlandet, Svalbard. Nor Polarinst Skr 176:23–44

    Google Scholar 

  • Lauritzen Ø, Worsley D (1975) Observations on the Upper Palaeozoic stratigraphy of the Ny Friesland area. Norsk Polarinstitutt Årbok 1973:41–51

    Google Scholar 

  • Leppig U, Forke HC, Montenari M, Fohrer B (2005) A three- and two-dimensional documentation of structural elements in schwagerinids (superfamily Fusulinoidea) exemplified by silicified material from the Upper Carboniferous of the Carnic Alps (Austria/Italy): a comparison with verbeekinoideans and alveolinids. Facies 51:541–553

    Article  Google Scholar 

  • Leutenegger S (1984) Symbiosis in benthic Foraminifera––specificity and host adaptation. J Foramin Res 14:16–35

    Article  Google Scholar 

  • Lønøy A (1981) Fasies analyse av undre permiske karbonater i Tyrrellfjellet Ledd av Nordenskiöldbreen Formasjonen, Billefjordområdet, Spitsbergen. Master Thesis, University of Bergen, Norway

  • Lønøy A (1995) A mid-Carboniferous, carbonate-dominated platform, central Spitsbergen. Nor Geol Tidsskr 75:48–63

    Google Scholar 

  • McWhae JRH (1953) The Carboniferous breccias of Billefjorden, Vestspitsbergen. Geol Mag 90:287–298

    Article  Google Scholar 

  • Miloslavskij MJ, Birjukov AS, Šlënskij SN, Dallmann WK (1998) Geological map D8G, Negribreen. Norsk Polarinstitutt, Oslo

  • Morin J, Desrochers A, Beauchamp O, Beauchamp B (1994) Facies analysis of Lower Permian platform carbonates, Sverdrup Basin, Canadian Arctic Archipelago. Facies 31:105–130

    Article  Google Scholar 

  • Nathorst AG (1910) Beiträge zur Geologie der Bäreninsel, Spitzbergens und des König-Karl-Landes. Bulletin Geologiska Institutionen Universitetet i Uppsala 10:261–416

    Google Scholar 

  • Nilsson I (1993) Upper Paleozoic fusulinid stratigraphy of the Barents Shelf and surrounding areas. PhD Thesis, University of Tromsø, Norway

  • Olaussen S (1982) Description and interpretation of two sedimentary sequences of the Lower/Middle Carboniferous from Nordaustlandet and Lomfjorden (Ismåsestranda and Bivrastfonna). Rapport 86.09, Statoil

  • Olszewski TD, Patzkowsky ME (2003) From cyclothems to sequences: the record of eustasy and climate on an icehouse epeiric platform (Pennsylvanian-Permian, North American Midcontinent). J Sediment Res 73:15–30

    Article  Google Scholar 

  • Pickard NAH, Eilertsen F, Hanken N-M, Johansen TA, Lønøy A, Nakrem HA, Nilsson I, Samuelsberg TG, Somerville ID (1996) Stratigraphic framework of Upper Carboniferous (Moscovian-Kasimovian) strata in Bünsow Land, central Spitsbergen: palaeogeographic implications. Nor Geol Tidsskr 76:169–185

    Google Scholar 

  • Reinicke B (2006) Facies analysis in the shallow marine limestone strata of NE Spitsbergen (Gipsdalen Group, Late Carboniferous). Master Thesis, University Freiburg, Germany

  • Ritter SM, Morris TH (1997) Oldest and lowest latitudinal occurrence of Palaeoaplysina: Middle Pennsylvanian Ely Limestone, Burbank Hills, Utah. Palaios 12:397–401

    Article  Google Scholar 

  • Ross CA (1972) Paleobiological analysis of fusulinacean (Foraminiferida) shell morphology. J Paleontol 46:719–728

    Google Scholar 

  • Ross CA, Ross JRP (1985) Late Palaeozoic depositional sequences are synchronous and worldwide. Geology 13:194–197

    Article  Google Scholar 

  • Ross CA, Ross JRP (1988) Late Paleozoic transgressive-regressive deposition. In: Wilgus CK, Hastings BS, Kendall CG, Posamentier HW, Ross CA, Van Wagoner JC (eds) Sea-level changes––an integrated approach, vol 42. SEPM Spec Publ, pp 227–247

  • Samuelsberg T, Pickard N (1999) Upper Carboniferous to Lower Permian transgressive-regressive sequences of central Spitsbergen, Arctic Norway. Geol J 34:393–411

    Article  Google Scholar 

  • Scholle PA, Bebout DG, Moore CH (1983) Carbonate depositional environments. AAPG Memoir 33, Tulsa

  • Scholle PA, Ulmer-Scholle DS (2003) A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis. AAPG Memoir 77, Tulsa

  • Scotese CR, McKerrow WS (1990) Revised world maps and introduction. In: McKerrow WS, Scotese CR (eds) Palaeozoic palaeogeography and biogeography. Geol Soc, pp 1–21

  • Skaug M, Dons C, Lauritzen Ø, Worsley D (1982) Lower Permian palaeoaplysinid bioherms and associated sediments from central Spitsbergen. Polar Res 2:57–75

    Article  Google Scholar 

  • Soreghan GS, Giles KA (1999) Amplitudes of Late Pennsylvanian glacioeustasy. Geology 27:255–258

    Article  Google Scholar 

  • Steel RJ, Worsley D (1984) Svalbard’s post-Caledonian strata––an atlas of sedimentational patterns and palaeogeographic evolution. In: Spencer AM, Holter E, Johnson SO, Mørk A, Nysæther E, Songstad P, Spinnangr Å (eds) Petroleum geology of the North European margin. Graham & Trotman Ltd., London, pp 109–135

    Google Scholar 

  • Stemmerik L (1997) Permian (Artinskian-Kazanian) cool-water carbonates in north Greenland, Svalbard, and the western Barents Sea. In: James NP, Clarke JAD (eds) Cool-water carbonates. SEPM, Tulsa, pp 349–364

    Google Scholar 

  • Stemmerik L, Larson P, Larssen G, Mørk A, Simonsen B (1994) Depositional evolution of Lower Permian Palaeoaplysina build-ups, Kapp Duner formation, Bjørnoya, Arctic Norway. Sediment Geol 92:161–174

    Article  Google Scholar 

  • Stemmerik L, Nilsson I, Elvebakk G (1995) Gzelian-Asselian depositional sequences in the western Barents Sea and Greenland. In: Steel RJ, Felt VL, Johannesen EP, Mathieu C (eds) Sequence stratigraphy on the Northwest European Margin. Elsevier, Amsterdam, pp 529–544

    Google Scholar 

  • Stemmerik L, Worsley D (1995) Permian history of the Barents Shelf area. In: Scholle PA, Peryt TM, Ulmer-Scholle DS (eds) The Permian of Northern Pangea. Sedimentary basins and economic resources. Springer, Berlin Heidelberg New York, pp 81–97

    Google Scholar 

  • Stevens C-H (1969) Water depth control of fusulinid distribution. Lethaia 2:121–132

    Article  Google Scholar 

  • Sundsbø G (1982) Facies analysis of the Late Carboniferous and Early Permian carbonates in the Billefjorden area, Spitsbergen. Unpublished Master Thesis, University of Bergen, Norway

  • Tucker ME, Calvet F, Hunt D (1993) Sequence stratigraphy of carbonate ramps: system tracts, models and application to the Muschelkalk carbonate platforms of eastern Spain. In: Posamentier HW, Summerhayes CP, Haq BU, Allen GP (eds) Sequence stratigraphy and facies associations. International Association of Sedimentologists. Blackwell, Oxford, pp 397–415

    Google Scholar 

  • Vachard D, Munnecke A, Servais T (2004) New SEM observations of keriothecal walls: implications for the evolution of Fusulinida. J Foramin Res 34:232–242

    Article  Google Scholar 

  • Veevers J, Powell CM (1987) Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica. Geol Soc Am Bull 98:475–487

    Article  Google Scholar 

  • Van Wagoner JC, Mitchum RM, Campion KM, Rahmanian VD (1990) Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: concepts for high-resolution correlation of time and facies. AAPG Methods in Exploration Series 7:1–55

    Google Scholar 

  • Walker RG, James NP (1992) Facies models: response to sea level change. Geological association of Canada. Love Printing Service Ltd, Ontario

    Google Scholar 

  • West RR, Archer AW, Miller KB (1997) The role of climate in stratigraphic patterns exhibited by late Palaeozoic rocks exposed in Kansas. Palaeogeogr, Palaeoclimatol Palaeoecol 128:1–16

    Article  Google Scholar 

  • Worsley D, Aga OJ, Dalland A, Elverhøi A, Thon A (1986) The geological history of Svalbard––evolution of an arctic archipelago. Statoil, Stavanger

    Google Scholar 

Download references

Acknowledgments

We are grateful to Winfried Dallmann for initiating the investigations as a part of the Norwegian Polar Institute’s geological mapping program. The organization and logistics department of the Norwegian Polar Institute is also thanked for the preparation and support during the field campaigns on Svalbard. Ralf Bätzel, technician at the University of Bremen is thanked for the excellent preparation of numerous thin-sections forming the basis of the microfacies investigations. Barbara Reinike, Peter Hülse, and Karin Behrend, who wrote their master, respectively, bachelor theses on the platform strata, contributed much information and greatly improved the understanding of the platform sedimentology and structure. Werner Buggisch and Vladimir Davydov are acknowledged for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dierk Blomeier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(TIFF 118 Mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blomeier, D., Scheibner, C. & Forke, H. Facies arrangement and cyclostratigraphic architecture of a shallow-marine, warm-water carbonate platform: the Late Carboniferous Ny Friesland Platform in eastern Spitsbergen (Pyefjellet Beds, Wordiekammen Formation, Gipsdalen Group). Facies 55, 291–324 (2009). https://doi.org/10.1007/s10347-008-0163-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-008-0163-3

Keywords

Navigation