Skip to main content
Log in

Development of a methodological approach for the accurate measurement of slope changes due to landslides, using digital photogrammetry

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

This paper presents a method for studying recent landscape evolution due to mass movements. The method presented employs digital photogrammetric techniques, combined with global positioning system (GPS) measurements, to analyse landslide features depicted in aerial images taken by ad hoc and historical flights. The method was applied and validated in a 7 -km2 area, located on a south-facing slope of a tributary of the Pas River (Cantabrian Range, Spain). In this area many landslide deposits and features are present, dated from 120,000  years BP to the present. The method starts with the design and carrying out of an ad hoc flight to take 1:5,000 photographs to be used as a reference, using different aircraft devices to control the position and geometry of the photograms. Different ground control points (GCPs) were measured using GPS techniques to support the geomorphological and photogrammetric work. Reference and historical photograms were digitised in a photogrammetric scanner and the digital images and GCPs were incorporated into a digital photogrammetric workstation to generate the reference digital stereo models by aerotriangulation. The models generated have a precision of 21 cm for the reference images and 33 cm for the historical images. The obtained landslide maps were compared with traditional geomorphological maps and an increased precision in the volume and area measurements was confirmed. Backward crown displacements show rates for the last 15 years of 15 mm year−1. Mass involved in landslide mobility rates in recent landslides are 440  tons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ackerman F (1996) Techniques and strategies for DEM generation. In: Greve C (ed) Digital photogrammetry: an addendum to the manual of photogrammetry. ASPRS, Bethesda, pp 135–141

    Google Scholar 

  • Ardizzone F, Cardinali M, Galli M, Guzzetti F, Reichenbach P (2007) Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar. Nat Hazard Earth Sys 7:637–650

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2004) Slope failures in the Blue Nile basin, as seen from landscape evolution perspective. Geomorphology 57:95–116

    Article  Google Scholar 

  • Baltsavias EP (1999) Airborne laser scanning: basic relations and formulas. ISPRS Int Soc Photograme 54:199–214

    Article  Google Scholar 

  • Barnard PL, Owen LA, Sharma MC, Finkel RC (2001) Natural and human-induced landsliding in the Garhwal Himalaya of northern India. Geomorphology 40:21–35

    Article  Google Scholar 

  • Breien H, De Blasio FV, Elverhøi A, Høeg K (2008) Erosion and morphology of a debris flow caused by a glacial lake outburst flood, Western Norway. Landslides 5:271–280

    Article  Google Scholar 

  • Brideau MA, Sturzenegger M, Stead D, Jaboyedoff M, Martin M, Roberts N, Ward B, Millard T, Clague J (2012) Stability analysis of the 2007 Chehalis lake landslide based on long-range terrestrial photogrammetry and airborne LiDAR data. Landslides 9:75–91

    Article  Google Scholar 

  • Brooks SM, Crozier MJ, Preston NJ, Anderson MG (2002) Regolith stripping and the control of shallow translational hillslope failure: application of a two-dimensional coupled soil hydrology-slope stability model, Hawke’s Bay, New Zealand. Geomorphology 45:165–179

    Article  Google Scholar 

  • Canuti P, Casagli N, Ermini L, Fanti R, Farina P (2004) Landslide activity as a geoindicator in Italy: significance and new perspectives from remote sensing. Environ Geol 45:907–919

    Article  Google Scholar 

  • Cardenal J, Mata E, Perez-Garcia JL, Delgado J, Hernandez MA, Gonzalez A, Díaz de Terán JR (2008a) Close range digital photogrammetry techniques applied to landslides monitoring. International Archives of Phtogrammetry, Remote Sensing and Spatial Information Sciences 37:235–240

    Google Scholar 

  • Cardenal J, Mata E, Pérez JL, Delgado J, Hernández MA, Díaz de Terán JR, Remondo J, González-Díez A (2008b) Slope Instability evolution by close range photogrammetric techniques. 33th. International Geological Congress”, Abstract in CD format. Uncertainty in spatial prediction modelling: from natural risk to resources Session GTN-01. 33rd IGC Organization, Oslo

  • Cardenal J, Mata E, Pérez JL, Delgado J, González-Díez A, Díaz de Terán JR, Olague I (2008c) Detección y cuantificación de cambios geomorfológicos a partir del análisis de vuelos históricos”. GeoFocus 9:150–165

    Google Scholar 

  • Cardenal J, Mata E, Perez-Garcia JL, Hernández MA, López Arenas A, Delgado J, González A, Díaz de Terán JR, Fernández G, Doughty M (2009) Integration of terrestrial laser scanner and photogrammetric techniques for monitoring rock avalanches. In: D. Kennedy. Ancient landscapes-Modern Prespectives. Conference Abstracts. 7th International Conference on Geomorphology (ANZIAG), Australian and New Zealand Geomorphology Group. Melbourne ISBN 1 877040746

  • Casagli N, Catani F, Del Ventisette C, Luzi G (2010) Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides 7:291–301

    Article  Google Scholar 

  • Casson B, Delacourt C, Baratoux D, Allemand P (2003) Seventeen years of the “La Clapière” landslide evolution analysed from ortho-rectified aerial photographs. Eng Geol 68:123–139

    Article  Google Scholar 

  • Cendrero A, Dramis F (1996) The contribution of landslides to landscape evolution in Europe. Geomorphology 15:191–211

    Article  Google Scholar 

  • Chandler J (1999) Effective application of automated digital photogrammetry for geomorphological research. Earth Surf Processes 24:51–63

    Article  Google Scholar 

  • Chandler J, Lane S, Walstra J (2007) Quantifying landform change. In: Fryer J, Mitchell H, Chandler J (eds) Applications of 3D measurements from images. Whittles, Dumbeath, pp 139–170

    Google Scholar 

  • EPOCH (European Community Programme) (1993) Temporal Occurrence and Forecasting of Landslides in the European Community, Flageollet JC (ed), 3 Volumes, Contract No. 900025

  • Cory MJ, McGill A (1999) DTM derivation at Ordnance Survey Ireland. In: Kölbl, O. (ed): Proceedings of the OEEPE Workshops on Automation in Digital Photogrammetric Production. ISSN 0257–0505. OEEPE Official Publication 37:198–208

    Google Scholar 

  • Devenecia K, Miller S, Pacey R, Walker S (1996) Experiences with commercial packages for automated aerial triangulation. Proceedings of ASPRS/ACSM Annual Convention I: 1548–557

  • Dewitte O, Jasselette JC, Cornet Y, Van Den Eeckhaut M, Collignon A, Poesen J, Demoulin A (2008) Tracking landslide displacement by multi-temporal DTMs: a combined aerial stereophotogrammetric and LiDAR approach in western Belgium. Eng Geol 99:11–22

    Article  Google Scholar 

  • Dikau R, Brunsden D, Schrott L, Ibsen ML (1996) Introduction. In: Dikau R, Brunsden D, Schrott L, Ibsen ML (eds) Landslide recognition. Identification, movement and curses. Wiley, Chichester, pp 1–12

    Google Scholar 

  • Farina P, Colombo D, Fumagalli A, Marks F, Moretti S (2006) Permanent scatterers for landslide investigations: outcomes from the ESA-SLAM project. Eng Geol 88:200–217

    Article  Google Scholar 

  • Fernandez P, Irigaray C, Jimenez J, El Hamdouni R, Crosetto M, Monserrat O, Chacon J (2009) First delimitation of areas affected by ground deformations in the Guadalfeo River Valley and Granada metropolitan area (Spain) using DInSAR technique. Eng Geol 105:84–101

    Article  Google Scholar 

  • Fernández T, Pérez JL, Cardenal J, Delgado J, Irigaray C, Chacón J (2011) Evolution of a diachronic landslide by comparison between different DEMs obtained from Digital Photogrammetry Techniques in Las Alpujarras (Granada, Southern Spain). In: Conference of Geoinformation for Disaster Management (GI4DM). Antalya, Turkey

  • Gary M, McAfee R, Wolf CL (eds) (1972) Glossary of geology. American Geological Institute, Washintong DC

    Google Scholar 

  • Glenn NF, Streutker DR, Chadwick DJ, Thackray GD, Dorsch SJ (2006) Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology 73:131–148

    Article  Google Scholar 

  • González Díez A, Fernández-Maroto G, Doughty M, Martínez-Cedrún P, Remondo J, Bruschi VM, Bonaechea J, Díaz de Terán JR, Cendrero A (2012) La influencia de la tubificacíon en la génesis de deslizamientos originados por lluvias intensas. In: A. González- Díez (cord). Avances de la Geomorfología en España 2010–2012. Actas de la XII Reunión Nacional de Geomorfología, Santander 17–20 septiembre 2012. Publican. Santander (Spain): 93–96. ISBN: 978-84-86116-54-5

  • González-Díez A (1995) Cartografía de movimientos de ladera y su aplicación al desarrollo temporal de los mismos y de la evolución del paisaje. Ph.D. Thesis. Univ. of Oviedo

  • González-Díez A, Díaz de Terán JR, Cendrero A (1992) A two-step method of geomorphological mapping for the classification of slope movements and for the assessment of their contribution to erosion and landscape evolution. In: M Hermelin (ed) Memorias del II Simposio Latinoamericano de riesgo geológico urbano II Conferencia Colombiana de Geología Ambiental, AGID-Univ. EAFIT, Medellin, 1, 161–170

  • González-Díez A, Salas L, Díaz de Terán JR, Cendrero A (1996a) Late Quaternary climate changes and mass movement frequency and magnitude in the Cantabrian region, Spain. Geomorphology 15:291–309

    Article  Google Scholar 

  • González-Díez A, Díaz de Terán JR, Barba J, Cendrero A, Remondo J (1996b) Propuesta de un modelo cronológico para las terrazas de los ríos de la vertiente cantábrica. Geogaceta 20:1096–1100

    Google Scholar 

  • González-Díez A, Remondo J, Díaz de Terán JR, Cendrero A (1999) Methodological approach for the analysis of the temporal occurrence and triggering factors of landslides. Geomorphology 30:95–113

    Article  Google Scholar 

  • González-Díez A, Cardenal J, Delgado J, Mata E, Pérez JL, Otero C, Bruschi VM, Díaz de Terán JR (2008) An improvement in the measure of recent geomorphic changes using digital photogrammetry 33th International Geological Congress”, Abstract in CD format. Uncertainty in spatial prediction modelling: from natural risk to resources Session GSM-01. 33rd IGC Organization, Oslo

  • González-Díez A, Fernández G, Díaz de Terán JR, Cardenal J, Delgado J, Doughty MW, Perez-Garcia JL, Mata E, Otero C, Manchado C (2009a) A methodological approach for the analysis of landslide changes using LIDAR and ADP. In: D. Kennedy Ancient landscapes-Modern Prespectives. Conference Abstracts. 7th International Conference on Geomorphology (ANZIAG), Australian and New Zealand Geomrphology Group. Melbourne ISBN 1 877040746

  • González-Díez A, Soto J, Gómez-Arozamena J, Bonachea J, Martínez-Díaz JJ, Cuesta JA, Olague I, Remondo J, Fernández Maroto G, Díaz de Terán JR (2009b) Identification of latent faults using a radon test. Geomorphology 110:11–19

    Article  Google Scholar 

  • Heredia N, Robador A, Rodríguez Fernández LR, Locutura J, Zapardiel JM, Gómez G, Calderón V, Díaz LA, Peralta M, Marquínez J, Gómez Ceballos R, Rodríguez ML (1990). Mapa geológico-minero de Cantabria a escala 1:100.000. Instituto Tecnológico Geominero de España y Diputación Regional de Cantabria. Santander

  • Herrera G, Notti D, García-Davalillo JC, Mora O, Cooksley G, Sánchez M, Arnaud A, Crosetto M (2011) Analysis with C- and X-band satellite SAR data of the Portalet landslide area. Landslides 8:195–206

    Article  Google Scholar 

  • Jaboyedoff M, Oppikofer T, Abellán A, Derron MH, Loye A, Metzger R, Pedrazzini A (2012) Use of LIDAR in landslide investigations: a review. Nat Hazards 61:5–28

    Article  Google Scholar 

  • Kääb A (2002) Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: examples using digital aerial imagery and ASTER data. ISPRS Int Soc Photograme 57:39–52

    Article  Google Scholar 

  • Kersten T (1999) Digital aerial triangulation with HATS. In: Kölbl O (ed) Proceedings of OEEPE Workshops on Automation in Digital Photogrammetric Production. ISSN 0257–0505. OEEPE Official Publication 37:283–297

    Google Scholar 

  • Kersten T, Haering S (1997) Automatic interior orientation of digital aerial images. Photogramme Eng Rem S 63:1007–1011

    Google Scholar 

  • Kimura H, Yamaguchi Y (2000) Detection of landslide areas using radar interferometry. Photogramm Eng Rem S 66(3):337–344

    Google Scholar 

  • Krzystek P, Wild D (1998) Generation of Digital Elevation Models. Proceedings of the Third Course on Digital Photogrammetry. University of Bonn-Landesvermessungsamt Nordrhein Westfalen. Bad-Godesberg, Bonn (Germany) 9–13th of February 1999

  • Martin Y (2000) Modelling hillslope evolution: linear and nonlinear transport relations. Geomorphology 34:1–21

    Article  Google Scholar 

  • Meng QR, Hu JM, Wang E, Qu HJ (2006) Late Cenozoic denudation by large-magnitude landslides in the eastern edge of Tibetan Plateau. Earth Planet Sc Lett 243:252–267

    Article  Google Scholar 

  • Mikhail EM, Bethel JS, McGlone JC (2001) Introduction to modern photogrammetry. Wiley, USA

    Google Scholar 

  • MOPU (1985) Cuenca del Norte de España. Inundaciones históricas y mapa de riesgos potenciales. Ministerio de Obras públicas y Urbanismo. Madrid. T I-IV

  • Mora P, Baldi P, Casula G, Fabris M, Ghirotti M, Mazzini E, Pesci A (2003) Global positioning systems and digital photogrammetry for the monitoring of mass movements: application to the Ca’ di Malta landslide (northern Apennines, Italy). Eng Geol 68:103–121

    Article  Google Scholar 

  • Novak K (1992) Rectification of digital imagery. Photogramm Eng Rem S 58:339–344

    Google Scholar 

  • Olague I, González-Díez A, Remondo J, Bonachea J, Díaz de Terán JR, Cendrero A (2004) “The study of temporal occurrence of landslides using digital photogrammetry”, In 32nd International Geology Congress, Session 216, G07.05-Geomorphometry and topographic analysis. Florence (Italy)

  • Powers PS, Chiarle M, Savage WZ (1996) Digital photogrammetric method for measuring horizontal surficial movements on the Slumgullion earthflow, Hinsdale County, Colorado. Comput Geosci 22:651–663

    Article  Google Scholar 

  • Remondo J, Soto J, González-Díez A, Díaz de Terán JR, Cendrero A (2005) Human impact on geomorphic processes and hazards in mountain areas in northern Spain. Geomorphology 66:69–84

    Article  Google Scholar 

  • Sas RJ, Scott Eaton L (2008) Quartzite terrains, geologic controls, and basin denudation by debris flows: their role in long-term landscape evolution in the central Appalachians. Landslides 5:97–106

    Article  Google Scholar 

  • Shinro A, Kazuyuki S, Akihisa T, Daisuke H (2002) Slope evolution processes of landslides around the Quaternary volcanoes in the Tohoku district, Japan. A case study in the surrounding area of the Hijiori caldera, Yamagata Prefecture. Landslides 38(4):10–17

    Google Scholar 

  • Strozzi T, Farina P, Corsini A, Ambrosi C, Thüring M, Zilger J, Wiesmann A, Wegmüller U, Werner C (2005) Survey and monitoring of landslide displacements by means of Lband satellite SAR interferometry. Landslides 2:193–201

    Article  Google Scholar 

  • Tralli DM, Blom RG, Zlotnicki V, Donnellan A, Evans DL (2005) Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS Int Soc Photograme 59:185–198

    Article  Google Scholar 

  • TESLEC (European Community Programme) (1996) The temporal stability and activity of landslides in europe with respect to climatic change. Final Report. R. Dikau, L. Schrott, M. Dehn, K. Hennrich, M.L. Ibsen, S. Rasemann (eds) 2 parts Contract No. EV5V-CT94-0454

  • Walstra J, Chandler JH, Dixon N, Dijkstra TA (2004) Time for change-quantifying landslide evolution using historical aerial photographs and modern photogrammetric methods. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34 (Part XXX). Commission 4:475–481

    Google Scholar 

  • Yamagishi H, Marui H, Ayalew L, Sekiguchi T, Horimatsu T, Hatamoto M (2004) Estimation of the sequence and size of the Tozawagawa landslide, Niigata, Japan, using aerial photographs. Landslides 1:299–303

    Article  Google Scholar 

Download references

Acknowledgements

This study was carried out as part of the Projects: FODISPIL, CICYT (REN 2002-00079-RIES) and MAPMUT, CICYT (CGL 2006–05903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. González-Díez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Díez, A., Fernández-Maroto, G., Doughty, M.W. et al. Development of a methodological approach for the accurate measurement of slope changes due to landslides, using digital photogrammetry. Landslides 11, 615–628 (2014). https://doi.org/10.1007/s10346-013-0413-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-013-0413-5

Keywords

Navigation