Skip to main content
Log in

Impact of different panels of microsatellite loci, different numbers of loci, sample sizes, and gender ratios on population genetic results in red deer

  • Original Article
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

Population genetic parameters from different studies might be significantly influenced by differences in sample size, fraction of males and females, marker number, and sets of markers used, reducing the comparability between studies. This hypothesis was tested on a red deer population of 205 individuals with an estimated size of 1000 animals. Four tests were performed: (1) the population was subdivided into 10 populations each with 10 to 150 individuals and genotyped with 16 markers, (2) the total population was genotyped 10 times with different panels of microsatellite loci containing 2 to 14 markers, (3) a subset of 8 microsatellite loci was used to genotype the total population; markers of this subset were replaced one by one with a different marker set and genotyping results were compared to the results of the original subset and (4) the effect of sex was estimated. Additionally, 24 references from literature, including 256 European red deer populations, were analyzed. A median of 25 individuals per population was investigated in published studies using 11 microsatellite markers (5 to 22). Sixty-eight percent of possible study comparisons matched with less than 10% of microsatellite loci. Our results show that the factors investigated, except for the factor gender, lead to significant deviations in the population genetic results, especially with sample sizes below 30, with less than 6 to 8 microsatellite markers and with the use of different panels of microsatellite loci. This is also true with respect to population genetic structure and the use of Bayesian methods. Therefore, populations from different studies should be compared with each other with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bana NA, Nyira A, Nagy J, Frank K, Nagy T, Steger V, Schiller M, Lakatos P, Sugar L, Horn P, Barta E, Orosz L (2018) The red deer Cervus elaphus genome CerEla1.0: sequencing, annotating, genes, and chromosomes. Mol Gen Genomics 293:665–684

    Article  CAS  Google Scholar 

  • Dellicour S, Frantz AC, Colyn M, Bertouille S, Chaumont F, Flamand MC (2011) Population structure and genetic diversity of red deer (Cervus elaphus) in forest fragments in North-Western France. Conserv Genet 12:1287–1297

    Article  Google Scholar 

  • Fickel J, Bubliy OA, Stache A, Noventa T, Jirsa A, Heurich M (2012) Crossing the border? Structure of the red deer (Cervus elaphus) population from the Bavarian–Bohemian forest ecosystem. Mamm Biol 77:211–220

    Article  Google Scholar 

  • Frantz AC, Hamann JL, Klein F (2008) Fine-scale genetic structure of red deer (Cervus elaphus) in a French temperate forest. Eur J Wildl Res 54:44–52

    Article  Google Scholar 

  • Frantz AC, Bertoille S, Eloy MC, Licoppe A, Chaumont F, Flamand MC (2012) Comparative landscape genetic analyses show a Belgian motorway to be a gene flow barrier for red deer (Cervus elaphus), but not wild boars (Sus scrofa). Mol Ecol 21:3445–3457

    Article  CAS  Google Scholar 

  • Galarza JA, Sánchez-Fernández B, Fandos P, Soriguer R (2015) The genetic landscape of the Iberian red deer (Cervus elaphus hispanicus) after 30 years of big-game hunting in southern Spain. J Wildl Manag 79:500–504

    Article  Google Scholar 

  • Galarza JA, Sánchez-Fernández B, Fandos P, Soriguer R (2017) Intensive management and natural genetic variation in red deer (Cervus elaphus). J Hered 108:496–504

    Article  CAS  Google Scholar 

  • Hajji GM, Charfi-Cheikrouha F, Lorenzini R, Vigne J-D, Hartl GB, Zachos FE (2008) Phylogeography and founder effect of the endangered Corsican red deer (Cervus elaphus corsicanus). Biodivers Conserv 17:659–673

    Article  Google Scholar 

  • Hmwe SS, Zachos E, Eckert I, Lorenzini R, Fico R, Hartl GB (2006a) Conservation genetics of the endangered red deer from Sardinia and Mesola with further remarks on the phylogeography of Cervus elaphus corsicanus. Biol J Linn Soc 88:691–670

    Article  Google Scholar 

  • Hmwe SS, Zachos FE, Sale JB, Rose HR, Hartl GB (2006b) Genetic variability and differentiation in red deer (Cervus elaphus) from Scotland and England. J Zool 270:479–487

    Article  Google Scholar 

  • Höglund J, Cortazar-Chinarro M, Jarnemo A, Thulin C-G (2013) Genetic variation and structure in Scandinavian red deer (Cervuselaphus): influence of ancestry, past hunting, and restoration management. Biol J Linn Soc 109:43–53

    Article  Google Scholar 

  • Hoffmann GS, Johannesen J, Griebeler EM (2016) Population dynamics of a natural red deer population over 200 years detected via substantial changes of genetic variation. Ecol Evol 6:3146–3153

    Article  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment: Cervus likelihood Model. Mol Ecol 16:1099–1106

    Article  Google Scholar 

  • Kinser A, Herzog S (2008) Genetisches Monitoring von Rotwild in Niedersachsen—Ergebnisse einer Langzeitstudie. Deutsche Wildtierstiftung:1–27

  • Koskinen MT, Hirvonen H, Landry P-A, Primmer CR (2004) The benefits of increasing the number of microsatellites utilized in genetic population studies: an empirical perspective. Hereditas 141:61–67

    Article  Google Scholar 

  • Krojerová-Prokešová J, Barančeková M, Koubek P (2015) Admixture of Eastern and Western European red deer lineages as a result of postglacial recolonization of the Czech Republic (Central Europe). J Hered 106:375–385

    Article  Google Scholar 

  • Kuehn R, Anastassiadis C, Pirchner F (1996) Transfer of bovine microsatellites to the cervine (Cervus elaphus). Anim Genet 27:199–201

    Article  CAS  Google Scholar 

  • Kuehn R, Schroeder W, Pirchner F, Rottmann O (2003) Genetic diversity, gene flow and drift in Bavarian red deer populations (Cervus elaphus). Concervation Genetics 4:157–166

    Article  CAS  Google Scholar 

  • Kuehn R (2004) Genetic roots of the red deer (Cervus elaphus) population in eastern Switzerland. J Hered 95:136–143

    Article  CAS  Google Scholar 

  • xNiedziałkowska M, Jędrzejewska B, Wójcik JM, Goodman SJ (2012) Genetic structure of red deer population in northeastern Poland in relation to the history of human interventions. J Wildl Manag 76:1264–1276

  • Nielsen EK, Olesen CR, Pertoldi C, Gravlund P, Barker JSF, Mucci N, Randi E, Loeschcke V (2008) Genetic structure of the Danish red deer (Cervus elaphus). Biol J Linn Soc 95:688–701

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  Google Scholar 

  • Perez-Espona S, Perez-Barberia FJ, Mcleodi JE, Jiggins CD, Gordon IJ, Pemberton JM (2008) Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Mol Ecol 17:981–996

    Article  CAS  Google Scholar 

  • Perez-Gonzales J, Frantz AC, Torres-Porras J, Castillo L, Carranza J (2012) Population structure, habitat features and genetic structure of managed red deer populations. Eur J Wildl Res 58:933–943

    Article  Google Scholar 

  • Poetsch M, Seefeldt S, Maschke M, Lignitz E (2001) Analysis of microsatellite polymorphism in red deer, roe deer, and fallow deer—possible employment in forensic applications. Forensic Sci Int 116:1–8

    Article  CAS  Google Scholar 

  • Puckett EE (2017) Variability in total project and per sample genotyping costs under varying study designs including with microsatellites or SNPs to answer conservation genetic questions. Conserv Genet Resour 9:289–304

    Article  Google Scholar 

  • Queiros J, Vicente J, Boadella M, Gortazar C, Alves PC (2014) The impact of management practices and past demographic history on the genetic diversity of red deer (Cephalus elaphus): an assessment of population and individual fitness. Biol J Linn Soc 111:209–233

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version 1.2): Population genetics software for exact tests and Ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Rice WR (1989) Analysing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Roed KH, Midthjell L (1998) Microsatellites in reindeer, Ragnifer tarandus, and their use in other cervids. Mol Ecol 7:1773–1776

    Article  CAS  Google Scholar 

  • Schlötterer C (2004) Opinion: The evolution of molecular markers — just a matter of fashion? Nature Rev Genet 5: 63–69

    Article  Google Scholar 

  • Slate J, Coltman DW, Goodman SJ, MacLean I, Pemberton JM, Williams JL (1998) Bovine microsatellite loci are highly conserved in red deer (Cervus elaphus), sika deer (Cervus nippon) and Soay sheep (Ovis aries). Anim Genet 29:307–315

    Article  CAS  Google Scholar 

  • Sprem N, Frantz AC, Cubric-Curik V, Safner T, Curik I (2013) Influence of habitat fragmentation on population structure of red deer in Croatia. Mamm Biol 78:290–295

    Article  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4: 535–538

    Article  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Willems H, Hecht W, Reiner G (2016) Temporal variation of the genetic diversity of a German red deer population between 1960 and 2012. Eur J Wildl Res 62:277–284

    Article  Google Scholar 

  • Zachos F, Hartl GB, Apollonio M, Reutershan T (2003) On the phylogeographic origin of the Corsian red deer (Cervus elaphus corsicanus): evidence from microsatellites and mitochondrial DNA. Mamm Biol 68:284–298

    Article  Google Scholar 

  • Zachos FE, Althoff C, Steynitz Y, Eckert I, Hartl GB (2007) Genetic analysis of an isolated red deer (Cervus elaphus) population showing signs of inbreeding depression. Eur J Wildl Res 53:61–67

    Article  Google Scholar 

  • Zachos FE, Hartl GB (2011) Phylogeography, population genetics and conservation of the European red deer Cervus elaphus. Mammal Rev 41:138–150

    Article  Google Scholar 

  • Zachos F, Frantz AC, Kuehn R, Bertouille S, Colyn M, Niedziałkowska M, Pérez-González J, Skog A, Sprem N, Flamand MC (2016) Genetic structure and effective population sizes in European Red Deer (Cervus elaphus) at a continental scale: insights from microsatellite DNA. J Hered 107:318–326

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the technical assistance of Mrs. Bettina Hopf and the samples and indispensable information about the red deer area provided by Dr. Norbert Teuwsen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Reiner.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiner, G., Lang, M. & Willems, H. Impact of different panels of microsatellite loci, different numbers of loci, sample sizes, and gender ratios on population genetic results in red deer. Eur J Wildl Res 65, 25 (2019). https://doi.org/10.1007/s10344-019-1262-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10344-019-1262-x

Keywords

Navigation