Skip to main content
Log in

Biochar: Black Gold for Sustainable Agriculture and Fortification Against Plant Pathogens—A Review

  • Review Article / Übersichtsbeitrag
  • Published:
Journal of Crop Health Aims and scope Submit manuscript

Abstract

To support the search for alternate chemical-free strategies to enhance plant growth and control plant diseases, we present an overview of the potential use of Biochar (BC) a product synthesized through pyrolysis from organic and agricultural waste used as a soil amendment, in suppressing broad range plant pathogens. A broad-spectrum BC effect contributes to the control of soil and foliar pathogens by altering the root exudates mechanism of the host plant, soil health and nutrient mobilization that affect the colonization of antagonistic microorganisms. Induction of plant defense mechanism by adding BC in potting medium to reduce foliar pathogens by the activation of defensive responses and induction of reactive oxygen species signaling in the plant system. Although few reports have been found for controlling oomycetes, viruses and bacterial pathogens through the application of BC, reports indicated that adding BC has potentially changed the soil microbiota colonization which contributes to disease suppression. BC also controls nematodes and harmful insects of plants. In addition, the main mechanisms of action for plant parasitic nematodes are changes in soil structure and could increase the biocontrol microorganism in the rhizosphere which resists nematodes colonizing and penetrating the plant system. Using BC-based amendments is a promising strategy with a carbon sequestration strategy, created on zero waste, as part of the integrated management of pathogens and parasites. Comprehensively, it is needed to be standardized the dosage and feedstock of BC in terms of sustainable production and disease control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrios GN (2005) Plant pathology, 4th edn. Academic Press, Amsterdam, p 635

    Google Scholar 

  • Ahluwalia O, Singh PC, Bhatia R (2021) A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria. Res Environ Sustain 5:100–132

    Google Scholar 

  • Akanmu AO, Sobowale AA, Abiala MA, Olawuyi OJ, Odebode AC (2020) Efficacy of biochar in the management of Fusarium verticillioides Sacc. causing ear rot in Zea mays L. Biotechnol Rep 26:e474. https://doi.org/10.1016/j.btre.2020.e00474

    Article  CAS  Google Scholar 

  • Alburquerque JA, Salazar P, Barrón V, Torrent J, del Campillo MD, Gallardo A, Villar R (2013) Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agron Sustain Dev 33:475–484

    Article  CAS  Google Scholar 

  • Arshad U, Naveed M, Javed N, Gogi MD, Ali MA (2020) Biochar application from different feedstocks enhances plant growth and resistance against Meloidogyne incognita in tomato. Int J Agric Biol 24(4):961–968

    CAS  Google Scholar 

  • Arshad U, Azeem F, Mustafa G, Bakhsh A, Toktay H, McGiffen M, Nawaz MA, Naveed M, Ali MA (2021) Combined application of biochar and biocontrol agents enhances plant growth and activates resistance against Meloidogyne incognita in tomato. Gesunde Pflanz 73(4):591–601

    Article  CAS  Google Scholar 

  • Arshad U, Raheel M, Ashraf W, Ur Rehman A, Zahid MS, Moustafa M, Ali MA (2022) Influence of biochar application on morpho-physiological attributes of tomato (Lycopersicon esculentum mill) and soil properties. Commun Soil Sci Plant Anal 54(4):515–525

    Article  Google Scholar 

  • Bonanomi G, Ippolito F, Cesarano G, Vinale F, Lombardi N, Crasto A, Woo SL, Scala F (2018) Biochar chemistry defined by 13C-CPMAS NMR explains opposite effects on soilborne microbes and crop plants. Appl Soil Ecol 124:351–361

    Article  Google Scholar 

  • Bonanomi G, Alioto D, Minutolo M, Marra R, Cesarano G, Vinale F (2020) Organic amendments modulate soil microbiota and reduce virus disease incidence in the TSWV-tomato pathosystem. Pathogens 9(5):379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonanomi G, Zotti M, Idbella M, Cesarano G, Al-Rowaily SL, Abd-ElGawad AM (2022) Mixtures of organic amendments and biochar promote beneficial soil microbiota and affect Fusarium oxysporum f. sp. lactucae, Rhizoctonia solani and Sclerotinia minor disease suppression. Plant Pathol 71(4):818–829

    Article  CAS  Google Scholar 

  • Bonfante-Fasolo P (1987) Vesicular-arbuscular mycorrhizae: fungus-plant interactions at the cellular level. Symb 3:249–268

    Google Scholar 

  • Brewer CE, Unger R, Schmidt-Rohr K, Brown RC (2011) Criteria to select biochars for field studies based on biochar chemical properties. Bioenerg Res 4:312–323

    Article  Google Scholar 

  • Brilli F, Loreto F, Baccelli I (2019) Exploiting plant volatile organic compounds (VOCs) in agriculture to improve sustainable defense strategies and productivity of crops. Front Plant Sci 10:4362–4379

    Article  Google Scholar 

  • Brtnicky M, Datta R, Holatko J, Bielska L, Gusiatin ZM, Kucerik J, Hammerschmiedt T, Danish S, Radziemska M, Mravcova L, Fahad S (2021) A critical review of the possible adverse effects of biochar in the soil environment. Sci Total Environ 796:148756

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Gao Y, Qi Y, Li J (2018) Biochar-enhanced composts reduce the potential leaching of nutrients and heavy metals and suppress plant-parasitic nematodes in excessively fertilized cucumber soils. Env Sci Poll Res 25:7589–7599

    Article  CAS  Google Scholar 

  • Cayuela ML, Sánchez-Monedero MA, Roig A, Hanley K, Enders A, Lehmann J (2013) Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Sci Rep 3(1):1732

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen S, Qi G, Ma G, Zhao X (2020) Biochar amendment controlled bacterial wilt through changing soil chemical properties and microbial community. Microbiol Res 231:1263–1273

    Article  Google Scholar 

  • De Tender C, Haegeman A, Vandecasteele B, Clement L, Cremelie P, Dawyndt P, Maes M, Debode J (2016) Dynamics in the strawberry rhizosphere microbiome in response to biochar and Botrytis cinerea leaf infection. Front Microbiol 7:2062

    Article  PubMed  PubMed Central  Google Scholar 

  • Domene X, Mattana S, Sánchez-Moreno S (2021) Biochar addition rate determines contrasting shifts in soil nematode trophic groups in outdoor mesocosms: An appraisal of underlying mechanisms. Appl Soil Ecol 158:103788

    Article  Google Scholar 

  • Du Z, Xiao Y, Qi X, Liu Y, Fan X, Li Z (2018) Peanut-shell biochar and biogas slurry improve soil properties in the North China Plain: a four-year field study. Sci Rep 8(1):1–9

    Article  Google Scholar 

  • Ducey TF, Novak JM, Johnson MG (2015) Effects of biochar blends on microbial community composition in two coastal plain soils. Agriculture 5(4):1060–1075

    Article  CAS  Google Scholar 

  • DuPont ST, Ferris H, Van Horn M (2009) Effects of cover crop quality and quantity on nematode-based soil food webs and nutrient cycling. Appl Soil Ecol 41(2):157–167

    Article  Google Scholar 

  • El-Hafez A, Omnia A, Amer MA (2021) The influence of bio-char on Common scab disease of potatoes. J Plant Prot Pathol 12(5):373–380

    Google Scholar 

  • Elad Y, David DR, Harel YM, Borenshtein M, Kalifa HB, Silber A, Graber ER (2010) Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 100(9):913–921

    Article  PubMed  Google Scholar 

  • Elsharkawy MM, Alotibi FO, Al-Askar AA, Adnan M, Kamran M, Abdelkhalek A, Behiry SI, Saleem MH, Ahmad AA, Khedr AA (2022) Systemic resistance induction of potato and tobacco plants against potato virus Y by Klebsiella oxytoca. Life 12(10):1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eo J, Park KC, Kim MH, Kwon SI, Song YJ (2018) Effects of rice husk and rice husk biochar on root rot disease of ginseng (Panax ginseng) and on soil organisms. Biol Agric Hortic 34(1):27–39

    Article  Google Scholar 

  • Eskov AK, Zverev AO, Abakumov EV (2021) Microbiomes in suspended soils of vascular epiphytes differ from terrestrial soil microbiomes and from each other. Microorganisms 9(5):1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foong SY, Liew RK, Yang Y, Cheng YW, Yek PN, Mahari WA, Lee XY, Han CS, Vo DV, Van Le Q, Aghbashlo M (2020) Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chem Eng J 389:124401

    Article  CAS  Google Scholar 

  • Gajić A, Koch HJ (2012) Sugar beet (Beta vulgaris L.) growth reduction caused by hydrochar is related to nitrogen supply. J Environ Qual 41(4):1067–1075

    Article  PubMed  Google Scholar 

  • Gao S, Doll DA, Stanghellini MS, Westerdahl BB, Wang D, Hanson BD (2018) Deep injection and the potential of biochar to reduce fumigant emissions and effects on nematode control. J Manag 223:469–477

    CAS  Google Scholar 

  • George C, Kohler J, Rillig MC (2016) Biochars reduce infection rates of the root-lesion nematode Pratylenchus penetrans and associated biomass loss in carrot. Soil Biol Biochem 95:11–18

    Article  CAS  Google Scholar 

  • Ghodake GS, Shinde SK, Kadam AA, Saratale RG, Saratale GD, Kumar M, Palem RR, AL-Shwaiman HA, Elgorban AM, Syed A, Kim DY (2021) Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: State-of-the-art framework to speed up vision of circular bioeconomy. J Clean Prod 297:126645

    Article  CAS  Google Scholar 

  • Graber ER, Tsechansky L, Khanukov J, Oka Y (2011) Sorption, volatilization, and efficacy of the fumigant 1, 3‑dichloropropene in a biochar-amended soil. Soil Sci Soc Am J 75(4):1365–1373

    Article  CAS  Google Scholar 

  • Gravel V, Dorais M, Ménard C (2013) Organic potted plants amended with biochar: its effect on growth and Pythium colonization. Can J Plant Sci 93(6):1217–1227

    Article  CAS  Google Scholar 

  • Gu Y, Hou Y, Huang D, Hao Z, Wang X, Wei Z, Jousset A, Tan S, Xu D, Shen Q, Xu Y (2017) Application of biochar reduces Ralstonia solanacearum infection via effects on pathogen chemotaxis, swarming motility, and root exudate adsorption. Plant Soil 415:269–281

    Article  CAS  Google Scholar 

  • Guenet B, Gabrielle B, Chenu C, Arrouays D, Balesdent J, Bernoux M, Bruni E, Caliman JP, Cardinael R, Chen S, Ciais P (2021) Can N2O emissions offset the benefits from soil organic carbon storage? Glob Change Biol 2:237–256

    Article  Google Scholar 

  • Harel MY, Elad Y, Rav-David D, Borenstein M, Shulchani R, Lew B, Graber ER (2012) Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant Soil 357:245–257

    Article  Google Scholar 

  • Hargreaves J, van West P (2019) Oomycete2root interactions. In: Reinhardt D, Sharma AK (eds) Methods in rhizosphere biology research. Springer, Singapore, pp 83–103

    Chapter  Google Scholar 

  • Hass A, Gonzalez JM, Lima IM, Godwin HW, Halvorson JJ, Boyer DG (2012) Chicken manure biochar as liming and nutrient source for acid Appalachian soil. J Environ Qual 41(4):1096–1106

    Article  CAS  PubMed  Google Scholar 

  • Hilbert K, Soentgen J (2020) From the “Terra Preta de Indio” to the “Terra Preta do Gringo”: a history of knowledge of the Amazonian dark earths. In: Ecosys biodive amaz Intech open, pp 1–17

    Google Scholar 

  • Huang WK, Ji HL, Gheysen G, Debode J, Kyndt T (2015) Biochar-amended potting medium reduces the susceptibility of rice to root-knot nematode infections. BMC Plant Biol 1:1–5

    Google Scholar 

  • Iacomino G, Idbella M, Laudonia S, Vinale F, Bonanomi G (2022) The suppressive effects of biochar on above-and belowground plant pathogens and pests: a review. Plants 11(22):3144

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaiswal AK, Frenkel O, Tsechansky L, Elad Y, Graber ER (2018) Immobilization and deactivation of pathogenic enzymes and toxic metabolites by biochar: a possible mechanism involved in soilborne disease suppression. Soil Biol Biochem 121:59–66

    Article  CAS  Google Scholar 

  • Jaiswal AK, Alkan N, Elad Y, Sela N, Graber ER, Frenkel O (2020) Molecular insights into biochar-mediated plant growth promotion and systemic resistance in tomato against Fusarium crown and root rot disease. Sci Rep 10(1):13934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeirani Z, Niu CH, Soltan J (2017) Adsorption of emerging pollutants on activated carbon. Rev Chem Eng 33(5):491–522

    Article  CAS  Google Scholar 

  • Joseph S, Cowie AL, Van Zwieten L, Bolan N, Budai A, Buss W, Cayuela ML, Graber ER, Ippolito JA, Kuzyakov Y, Luo Y (2021) How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioen 11:1731–1764

    Article  Google Scholar 

  • Kammann C, Ratering S, Eckhard C, Muller C (2012) Biochar andhydrochar eff ects on greenhouse gas (carbon dioxide, nitrous oxide, methane) fl uxes from soils. J Environ Qual 41:1052–1066

    Article  CAS  PubMed  Google Scholar 

  • Kammann CI, Linsel S, Gößling JW, Koyro HW (2011) Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil–plant relations. Plant Soil 345:195–210

    Article  CAS  Google Scholar 

  • Karer J, Bernhard W, Franz Z, Stefanie K, Gerhard S (2013) Biochar application to temperate soil: effect on nutrient uptake and crop yield under field conditions. Agric Food Sci 22:390–403

    Article  Google Scholar 

  • Kawanna M, Elbebany A, Basyony A (2021) Impact of biochar soil amendment on tomato mosaic virus infection, growth and nutrients uptake of tomato plants. Alex Sci Exch J 42(4):799–807

    Google Scholar 

  • Kocsis T, Biró B, Ulmer Á, Szántó M, Kotroczó Z (2018) Time-lapse effect of ancient plant coal biochar on some soil agrochemical parameters and soil characteristics. Environ Sci Pollut Res Int 25:990–999

    Article  CAS  PubMed  Google Scholar 

  • Kolton M, Graber ER, Tsehansky L, Elad Y, Cytryn E (2017) Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere. New Phytol 213(3):1393–1404

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Elad Y, Tsechansky L, Abrol V, Lew B, Offenbach R, Graber ER (2018) Biochar potential in intensive cultivation of Capsicum annuum L.(sweet pepper): crop yield and plant protection. J Sci Food Agric 98(2):495–503

    Article  CAS  PubMed  Google Scholar 

  • Lammirato C, Miltner A, Kaestner M (2011) Effects of wood char and activated carbon on the hydrolysis of cellobiose by β‑glucosidase from Aspergillus niger. Soil Biol Biochem 43(9):1936–1942

    Article  CAS  Google Scholar 

  • Lehmann J (2007) Bio-energy in the black. Front Ecol Soc 5:381–387

    Article  Google Scholar 

  • Li S, Wang S, Fan M, Wu Y, Shangguan Z (2020) Interactions between biochar and nitrogen impact soil carbon mineralization and the microbial community. Soil Till Res 196:104437

    Article  Google Scholar 

  • Lu Y, Rao S, Huang F, Cai Y, Wang G, Cai K (2016) Effects of biochar amendment on tomato bacterial wilt resistance and soil microbial amount and activity. Int J Agr. https://doi.org/10.1155/2016/2938282

    Article  Google Scholar 

  • Luigi M, Manglli A, Dragone I, Antonelli MG, Contarini M, Speranza S, Bertin S, Tiberini A, Gentili A, Varvaro L, Tomassoli L (2022) Effects of biochar on the growth and development of tomato seedlings and on the response of tomato plants to the infection of systemic viral agents. Front Microbiol 13:862075

    Article  PubMed  PubMed Central  Google Scholar 

  • Major J, Lehmann J, Rondon M, Goodale C (2010) Fate of soil-applied black carbon: Downward migration, leaching, and soil respiration. Glob Change Biol 16:1366–1379

    Article  Google Scholar 

  • Martínez-Gómez Á, Andrés MF, Barón-Sola Á, Díaz-Manzano FE, Yousef I, Mena IF, Díaz E, Gómez-Torres Ó, González-Coloma A, Hernández LE, Escobar C (2023) Biochar from grape pomace, a waste of vitivinicultural origin, is effective for root-knot nematode control. Biochar 5(1):30

    Article  Google Scholar 

  • Mondal S, Ghosh S, Mukherjee A (2021) Application of biochar and vermicompost against the rice root-knot nematode (Meloidogyne graminicola): an eco-friendly approach in nematode management. J Plant Dis Protec 128:819-829

  • Muthusamy M, Uma S, Suthanthiram B, Saraswathi MS, Chandrasekar A (2019) Genome-wide identification of novel, long non-coding RNAs responsive to Mycosphaerella eumusae and Pratylenchus coffeae infections and their differential expression patterns in disease-resistant and sensitive banana cultivars. Plant Biotechnol Rep 13:73–83

    Article  Google Scholar 

  • Neogi S, Sharma V, Khan N, Chaurasia D, Ahmad A, Chauhan S, Singh A, You S, Pandey A, Bhargava PC (2022) Sustainable biochar: A facile strategy for soil and environmental restoration, energy generation, mitigation of global climate change and circular bioeconomy. Chemosphere 293:133474

    Article  CAS  PubMed  Google Scholar 

  • Ogundeji AO, Li Y, Liu X, Meng L, Sang P, Mu Y, Wu H, Ma Z, Hou J, Li S (2021) Eggplant by grafting enhanced with biochar recruits specific microbes for disease suppression of Verticillium wilt. Appl Soil Ecol 163:103912

    Article  Google Scholar 

  • Paterson RR, Lima N (2018) Climate change affecting oil palm agronomy, and oil palm cultivation increasing climate change, require amelioration. Ecol Evol 8(1):452–461

    Article  PubMed  Google Scholar 

  • Peake LR, Reid BJ, Tang X (2014) Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils. Geoderma 235:182–190

    Article  Google Scholar 

  • Poveda J, Martínez-Gómez Á, Fenoll C, Escobar C (2021) The use of biochar for plant pathogen control. Phytopathology 111(9):1490–1499

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Xiao S, Chen X, Ali I, Gou J, Wang D, Zhu B, Zhu W, Shang R, Han M (2022) Biochar-based microbial agent reduces U and Cd accumulation in vegetables and improves rhizosphere microecology. J Hazard Mater 436:129–147

    Article  Google Scholar 

  • Rafique M, Ortas I, Rizwan M, Chaudhary HJ, Gurmani AR, Munis MF (2020) Residual effects of biochar and phosphorus on growth and nutrient accumulation by maize (Zea mays L.) amended with microbes in texturally different soils. Chemosphere 238:124710

    Article  CAS  PubMed  Google Scholar 

  • Rahayu DS, Sari NP (2017) Development of Pratylenchus coffeae in biochar applied soil, coffee roots and its effect on plant growth. Pelita Perk 33:24–32

    Google Scholar 

  • Rasool M, Akhter A, Soja G, Haider MS (2021) Role of biochar, compost and plant growth promoting rhizobacteria in the management of tomato early blight disease. Sci Rep 11(1):6092

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren C, Zhang W, Zhong Z, Han X, Yang G, Feng Y, Ren G (2018) Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Sci Total Environ 610:750–758

    Article  PubMed  Google Scholar 

  • Retan GA (1915) Charcoal as a means of solving some nursery problems. For Q 13:25–30

    Google Scholar 

  • Rondon M, Ramirez JA, Lehmann J (2005) Charcoal additions reduce net emissions of greenhouse gases to the atmosphere. In: Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration, Baltimore, USA, March 21–24

    Google Scholar 

  • Rondon MA, Lehmann J, Ramírez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43:699–708

    Article  Google Scholar 

  • Schomberg HH, Gaskin JW, Harris K, Das KC, Novak JM, Busscher WJ, Watts DW, Woodroof RH, Lima IM, Ahmedna M, Rehrah D (2012) Influence of biochar on nitrogen fractions in a coastal plain soil. J Environ Qual 41(4):1087–1095

    Article  CAS  PubMed  Google Scholar 

  • Shen M, Huang W, Chen M, Song B, Zeng G, Zhang Y (2020) (Micro) plastic crisis: un-ignorable contribution to global greenhouse gas emissions and climate change. J Clean Prod 254:120138

    Article  CAS  Google Scholar 

  • Silva LG, de Andrade CA, Bettiol W (2020) Biochar amendment increases soil microbial biomass and plant growth and suppresses Fusarium wilt in tomato. Trop Plant Pathol 45:73–83

    Article  Google Scholar 

  • Summerell BA (2019) Resolving Fusarium: current status of the genus. Annu Rev Phytopathol 57:323–339

    Article  CAS  PubMed  Google Scholar 

  • Tian JH, Shuang RA, Yang GA, Yang LU, Cai KZ (2021) Wheat straw biochar amendment suppresses tomato bacterial wilt caused by Ralstonia solanacearum: Potential effects of rhizosphere organic acids and amino acids. J Integr Agric 20(9):2450–2462

    Article  CAS  Google Scholar 

  • Tomczyk A, Sokołowska Z, Boguta P (2020) Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Bio Technol 19(1):191–215

    Article  CAS  Google Scholar 

  • Vaccari FP, Baronti S, Lugato E, Genesio L, Castaldi S, Fornasier F, Miglietta F (2011) Biochar as a strategy to sequester carbon and increase yield in durum wheat. Eur J Agron 34(4):231–238

    Article  CAS  Google Scholar 

  • Vahedi R, Rasouli-Sadaghiani M, Barin M, Vetukuri RR (2021) Interactions between biochar and compost treatment and mycorrhizal fungi to improve the qualitative properties of a calcareous soil under rhizobox conditions. Agriculture 11(10):993

    Article  CAS  Google Scholar 

  • Valenga MG, Martins G, Martins TA, Didek LK, Gevaerd A, Marcolino-Junior LH, Bergamini MF (2023) Biochar: An environmentally friendly platform for construction of a SARS-CoV‑2 electrochemical immunosensor. Sci Total Environ 858:159797

    Article  CAS  PubMed  Google Scholar 

  • Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934

    Article  Google Scholar 

  • Van der Ent S, Van Wees SC, Pieterse CM (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70(13–14):1581–1588

    Article  CAS  PubMed  Google Scholar 

  • Van Nguyen S, Chikamatsu S, Kato R, Chau KM, Nguyen PK, Ritz K, Toyota K (2022) A biochar improves the efficacy of green manure-based strategies to suppress soybean cyst nematode (Heterodera glycines) and promotes free-living nematode populations. J Soil Sci Plant Nutr 22(3):3414–3427

  • Verma S, Awasthi MK, Liu T, Awasthi SK, Syed A, Bahkali AH, Verma M, Zhang Z (2023) Influence of biochar on succession of fungal communities during food waste composting. Biores Tech 385:129437

    Article  CAS  Google Scholar 

  • Verwaaijen B, Wibberg D, Kröber M, Winkler A, Zrenner R, Bednarz H, Niehaus K, Grosch R, Pühler A, Schlüter A (2017) The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.). PLoS ONE 12(5):e1772–78

    Article  Google Scholar 

  • Wang G, Ma Y, Chenia HY, Govinden R, Luo J, Ren G (2020) Biochar-mediated control of phytophthora blight of pepper is closely related to the improvement of the rhizosphere fungal community. Front Microbiol 11:1427

    Article  PubMed  PubMed Central  Google Scholar 

  • Watzinger A, Feichtmair S, Kitzler B, Zehetner F, Kloß S, Wimmer B, Zechmeister-Boltenstern S, Soja G (2014) Soil microbial communities responded to biochar application in temperate soils and slowly metabolized 13C-labelled biochar as revealed by 13C PLFA analyses: results from a short-term incubation and pot experiment. Eur J Soil Sci 65(1):40–51

    Article  CAS  Google Scholar 

  • Wong JT, Chen X, Deng W, Chai Y, Ng CW, Wong MH (2019) Effects of biochar on bacterial communities in a newly established landfill cover topsoil. J Environ Manag 236:667–673

    Article  CAS  Google Scholar 

  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1(1):56

    Article  PubMed  Google Scholar 

  • Wu H, Lin M, Rensing C, Qin X, Zhang S, Chen J, Wu L, Zhao Y, Lin S, Lin W (2020) Plant-mediated rhizospheric interactions in intraspecific intercropping alleviate the replanting disease of Radix pseudostellariae. Plant Soil 454:411–430

    Article  CAS  Google Scholar 

  • Xiao X, Chen B, Lizhong Z (2014) Transformation, morphology and dissolution of silicon and carbon in rice straw derived biochars under different pyrolytic temperatures. Environ Sci Technol 48:3411–3419

    Article  CAS  PubMed  Google Scholar 

  • Yoro KO, Daramola MO (2020) CO2 emission sources, greenhouse gases, and the global warming effect. In: Adv carbon capt. Woodhead, pp 3–28

    Chapter  Google Scholar 

  • Zeshan MA, Iftikhar Y, Ali S, Ahmed N, Ghani MU, Kamran M, Khan QN (2018) Induction of resistance in tomato plants against Tomato leaf curl virus by using biochar and seed priming. Pak J Phytopathol 30(1):19–25

    Article  Google Scholar 

  • Zhang XK, Qi LI, Liang WJ, Zhang M, Xue-Lian BA, Zu-Bin XI (2013) Soil nematode response to biochar addition in a Chinese wheat field. Pedosphere 23(1):98–103

    Article  CAS  Google Scholar 

  • Zhu X, Chen B, Zhu L, Xing B (2017) Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environ Pollut 227:98–115

    Article  CAS  PubMed  Google Scholar 

  • Zwart DC, Kim S (2012) Biochar amendment increases resistance to stem lesions caused by Phytophthora spp. in tree seedlings. HortScience 47(12):1736–1740

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

UA prepared the original manuscript. MA, WL and MAA contributed to supervision, editing, conceptualization. MNS, MJ and MTL gathered relevant research articles and review the manuscript. All the authors also contributed to reviewing and editing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Muhammad Amjad Ali.

Ethics declarations

Conflict of interest

U. Arshad, M.T. Altaf, W. Liaqat, M. Ali, M.N. Shah, M. Jabran and M.A. Ali declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The data has not been published partially or completely in any other journal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, U., Altaf, M.T., Liaqat, W. et al. Biochar: Black Gold for Sustainable Agriculture and Fortification Against Plant Pathogens—A Review. Journal of Crop Health 76, 385–396 (2024). https://doi.org/10.1007/s10343-023-00952-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-023-00952-y

Keywords

Navigation