Skip to main content

Advertisement

Log in

Effects of Arbuscular Mycorrhizal Fungi (AMF) and Biochar On the Growth of Pepper (Capsicum annuum L.) Under Salt Stress

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

An Erratum to this article was published on 03 August 2023

This article has been updated

Abstract

Soil salinity is a significant abiotic factor that negatively affects the growth and yield of many plants. Separately, biochar and arbuscular mycorrhizal fungus contributed positively to salt-stressed plant growth. To alleviate salinity stress and promote pepper growth, biochar and mycorrhiza are rarely researched together. In this work, the effects of salt stress (AMF) and biochar (BC) applications on the pepper (Capsicum annuum L.) plant’s morphological and physiological growth characteristics and some soil properties were investigated. Biochar (2% and 4%) and AMF inoculum (Funneliformis mosseae (Fm) and ERS commercial AMF inoculum) were applied to a commercial pepper cultivar (Sera Demre 8) at varying salt concentrations (0 mM, 50 mM, 100 mM, and 150 mM) in order to determine the optimal treatments (AMF inoculum and biochar concentration). In general, when the salt concentration increased, the morphological growth values of the pepper plant and the AMF density decreased, but the EC value of the soil increased. In general, the plants were able to endure a salt concentration of 100 mM, but their sensitivity increased when exposed to 150 mM NaCl. Biochar and AMF independently increased plant growth parameters, leaf relative water content (LRWC), and phosphorus (P), while decreasing membrane injury index (MII) values. The interaction biochar and AMF positively improved microbial activity under conditions of salt stress, while mycorrhizal dependency did not arise in AMF treatments. Based on the results, it was found that the 2% biochar ratio and F. mosseae were beneficial to the morphological development and growth of AMF. Therefore, it was determined that the synergistic effect of AMF and biochar might be used as a viable and sustainable agricultural alternative to prevent salt stress damage in pepper growing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  • Abdelaal KA, Mazrou YS, Hafez YM (2020) Silicon foliar application mitigates salt stress in sweet pepper plants by enhancing water status, photosynthesis, antioxidant enzyme activity and fruit yield. Plant J 9(6):733. https://doi.org/10.3390/plants9060733

    Article  CAS  Google Scholar 

  • Abidalrazzaq Musluh Al Rubaye O, Yetisir H, Ulas F, Ulas A (2021) Enhancing salt stress tolerance of different pepper (Capsicum annuum L.) inbred line genotypes by rootstock with vigorous root system. Gesunde Pflanz 73(3):375–389. https://doi.org/10.1007/s10343-021-00564-4

    Article  CAS  Google Scholar 

  • Abudureyimu B, Aksoy E (2019) Comparison of the sensitivity of Arabidopsis SOS pathway mutants under salt stress. Turk J Agric Sci Technol 7(11):1982–1989. https://doi.org/10.24925/turjaf.v7i11.1982-1989.2983

    Article  Google Scholar 

  • Agbna GH, Ali AB, Bashir AK, Eltoum F, Hassan MM (2017) Influence of biochar amendment on soil water characteristics and crop growth enhancement under salinity stress. Int J Eng Work Kambohwell Publ Enterp 4(4):49–54. https://doi.org/10.5281/zenodo.555942

    Article  Google Scholar 

  • Akay Rastgeldi ZH, (2010) The Effects of Different Salt Concentrations in Pepper on Some Physiological Parameters and Mineral Matter Content (master’s thesis, unpublished). HU, Institute of Science and Technology, Sanliurfa.

  • Akköprü A, Demir S (2005) Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J Phytopathol 153(9):544–550. https://doi.org/10.1111/j.1439-0434.2005.01018.x

    Article  Google Scholar 

  • Allakhverdiev SI, Kinoshita M, Inaba M, Suzuki I, Murata N (2001) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiol 125(4):1842–1853. https://doi.org/10.1104/pp.125.4.1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almaca A, Almaca ND, Senbayram M (2021) Interactıve effect of Arbuscular Mycorrhizal Fungi Inoculatıon and phosphorus Fertilizer Application on Yield and Nutrient content of red pepper (Capsicum annuum L.) in a Semi-Arid Region. Applied Ecol Environmental Res 19(4):2779–2792. https://doi.org/10.15666/aeer/1904_27792792

    Article  Google Scholar 

  • Alqarawi AA, Abd Allah EF, Hashem A (2014) Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. J Plant Interactions 9(1):802–810. https://doi.org/10.1080/17429145.2014.949886

    Article  CAS  Google Scholar 

  • Altunlu H (2019) The effects of mycorrhiza application on growth and antioxidant enzymes of capia type pepper (Capsicum annuum L.) seedling under salty conditions. J Ege Univ Fac Agric 56(2):139–146

    Google Scholar 

  • Altuntas O, Dasgan YH, Kutsal KI (2016) Effects of mychorrhiza on pepper plant growth and nutrients under salinity stress. In: Ertsey-Peregi K, Fustos Z, Palotas G, Csillery G (eds) XVI th EUCARPIA Capsicum and Eggplant Working Group Meeting Hungary, 12–14 Sep, pp 194–202

    Google Scholar 

  • Amacher JK, Koenig K, Kitchen B (2000) Salinity and plant tolerance. https://extension.usu.edu/files/publications/publication/AG-SO-03.pdf. Accessed 30 Oct 2022

  • Arisha MH, Shah S, Gong ZH, Jing H, Li C, Zhang HX (2015) Ethyl methane sulfonate induced mutations in M2 generation and physiological variations in M1 generation of peppers (Capsicum annuum L.). Front Plant Sci 6:399. https://doi.org/10.3389/fpls.2015.00399

    Article  PubMed  PubMed Central  Google Scholar 

  • Augé RM, Toler HD, Saxton AM (2015) Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25(1):13–24. https://doi.org/10.1007/s00572-014-0585-4

    Article  PubMed  Google Scholar 

  • Beltrano J, Ruscitti M, Arango MC, Ronco M (2013) Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. J Soil Sci Plant Nutr 13(1):123–141. https://doi.org/10.4067/S0718-95162013005000012

    Article  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7(7):1099. https://doi.org/10.1105/tpc.7.7.1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyno G, Demir S, Danesh YR (2022) Effects of biological control agents against Alternaria solani (Ell. and G. Martin) Sor. in tomato. Eur J Plant Pathol 162(1):19–29. https://doi.org/10.1007/s10658-021-02398-2

    Article  CAS  Google Scholar 

  • Çekiç FÖ, Ünyayar S, Ortaş İ (2012) Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long term salt stress. Turk J Bot 36(1):63–72. https://doi.org/10.3906/bot-1008-32

    Article  CAS  Google Scholar 

  • Choudhury AR, Choi J, Walitang DI, Trivedi P, Lee Y, Sa T (2021) ACC deaminase and indole acetic acid producing endophytic bacterial co-inoculation improves physiological traits of red pepper (Capsicum annum L.) under salt stress. J Plant Physiol 267:153544. https://doi.org/10.1016/j.jplph.2021.153544

    Article  CAS  Google Scholar 

  • Declerck S, Plenchette C, Strullu DG (1995) Mycorrhizal dependency of banana (Musa acuminate, AAA group) cultivar. Plant Soil 176:183–187. https://doi.org/10.1007/BF00017688

    Article  CAS  Google Scholar 

  • Dume B, Mosissa T, Nebiyu A (2016) Effect of biochar on soil properties and lead (Pb) availability in a military camp in South West Ethiopia. Afr J Environ Sci Technol 10:77–85. https://doi.org/10.5897/AJEST2015.2014

    Article  CAS  Google Scholar 

  • Egamberdieva D, Ma H, Alaylar B, Zoghi Z, Kistaubayeva A, Wirth S, Bellingrath-Kimura SD (2021) Biochar amendments improve licorice (Glycyrrhiza uralensis Fisch.) growth and nutrient uptake under salt stress. Plants 10(10):2135. https://doi.org/10.3390/plants10102135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmer WH, Pignatello JJ (2011) Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Dis 95(8):960–966. https://doi.org/10.1094/PDIS-10-10-0741

    Article  PubMed  Google Scholar 

  • Elzobair KA, Stromberger ME, Ippolito JA, Lentz RD (2016) Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol. Chemosphere 142:145–152. https://doi.org/10.1016/j.chemosphere.2015.06.044

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Devi TS, Gupta S, Kapoor R (2019) Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front Plant Sci 10:470. https://doi.org/10.3389/fpls.2019.00470

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan S, Blake TG (1994) Abscisic acid induced electrolyte leakage in woody species with contrasting ecological require-ments. Plant Physiol Biochem 89:817–823. https://doi.org/10.1111/j.1399-3054.1994.tb00407.x

    Article  Google Scholar 

  • Gaffar S, Riquelme C, Jayachandran K (2021) Investigating the effects of twelve biochars on the growth of capsicum annuum ‘Jalapeno’ pepper, microbial population and enzyme activities in soil. J Hortic Sci 8:296

    Google Scholar 

  • Geleta LF, Labuschagne MT (2006) Combining ability and heritability for vitamin C and total soluble solids in pepper (Capsicum annuum L.). J Sci Food Agric 86(9):1317–1320. https://doi.org/10.1002/jsfa.2494

    Article  CAS  Google Scholar 

  • Gerdemann LW, Nicholson TH (1963) Spores of mycorrhizal endogene extraeted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Article  Google Scholar 

  • Giovanetti M, Mosse B (1980) An evaluation of techniques for measuring vesiculararbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Gomes da Silva M, de Oliveira Gondim AR, Feitosa Lêdo ER, Francilino AH, da Silva YA, Gheyi HR (2021) Response of two pepper species (Capsicum chinense Jacq. and Capsicum frutescens L.) to salt stress at germination stage in Northeast Brazil. Revista De Ciencias Agrícolas 38(2):75–88. https://doi.org/10.22267/rcia.213802.161

    Article  Google Scholar 

  • Güneş H (2022) Effects of Arbuscular Mycorhizal Fungus (AMF) and Biochar on Verticillium dahliae Kleb. and Plant Development in Pepper (Capsicum annum L) Growed Under Salt Stress. Van Yuzuncu University, PhD Thesis

  • Güneş H, Demir S, Akköprü A (2022) Relationship between some plants species belonging to brassicaceae, chenopodiaceae and urticaceae families, and arbuscular mycorrhizal fungi and Rhizobacteria. Kahramanmaraş Sutcu Imam Univ J Agric Nat 25(6):1350–1360. https://doi.org/10.18016/ksutarimdoga.vi.1096156

    Article  Google Scholar 

  • Hammer EC, Forstreuter M, Rillig MC, Kohler J (2015) Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress. Appl Soil Ecol 96:114–112. https://doi.org/10.1016/j.apsoil.2015.07.014

    Article  Google Scholar 

  • Hansen JW (1996) Is agricultural sustainability a useful concept? Agric Syst 50:117–143. https://doi.org/10.1016/0308-521X(95)00011-S

    Article  Google Scholar 

  • Hashem A, Kumar A, Al-Dbass AM, Alqarawi AA, Al-Arjani ABF, Singh G, Abd_Allah EF (2019) Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi J Biol Sci 26(3):614–624. https://doi.org/10.1016/j.sjbs.2018.11.005

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim MEH, Ali AYA, Elsiddig AMI, Zhou G, Nimir NEA, Agbna GH, Zhu G (2021) Mitigation effect of biochar on sorghum seedling growth under salinity stress. Pak J Bot. https://doi.org/10.30848/PJB2021-2(21)

    Article  Google Scholar 

  • Islam E (2016) Effect of Hazelnut Crust Compost on Soil Mechanical Properties (master’s thesis, unpublished). ODU, Institute of Science and Technology, Ordu.

  • Jabborova D, Annapurna K, Azimov A, Tyagi S, Pengani KR, Sharma P, Vikram KV, Poczai P, Nasif O, Ansari MJ, Sayyed RZ (2022) Co-inoculation of biochar and arbuscular mycorrhizae for growth promotion and nutrient fortification in soybean under drought conditions. Front Plant Sci 13:947547. https://doi.org/10.3389/fpls.2022.947547

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson ML (1958) Chemical composition of soils. In: Bear FE (ed) Chemistry of the soil, 2nd edn. Reinhold, New York, pp 71–141

    Google Scholar 

  • Juniper S, Abbott L (1993) Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4(2):45–57. https://doi.org/10.1007/BF00204058

    Article  Google Scholar 

  • Kacjan Maršić N, Štolfa P, Vodnik D, Košmelj K, Mikulič-Petkovšek M, Kump B, Šircelj H (2021) Physiological and biochemical responses of ungrafted and grafted bell pepper plants (Capsicum annuum L. var. grossum (L.) sendtn.) grown under moderate salt stress. Plants 10(2):314. https://doi.org/10.3390/plants10020314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaouther Z, Mariem BF, Fardaous M, Cherif H (2012) Impact of salt stress (NaCl) on growth, chlorophyll content and fluorescence of Tunisian cultivars of chili pepper (Capsicum frutescens L.). J Stress Physiol Biochem 8(4):236–252

    Google Scholar 

  • Kaya E (2011) Screening of The Bean Genotypes For Their Tolerance to Salinity and Drought Stresses at the Early Plant Growth Phase. Cukurova University Institute of Natural and Applied Sciences, (Ph.D. Thesis) Adana, (in Turkish).

  • Kehri HK, Akhtar O, Zoomi I, Pandey D (2018) Arbuscular mycorrhizal fungi: taxonomy and its systematics. Int J Life Sci Res 6(4):58–71. https://www.researchgate.net/publication/328289460

    Google Scholar 

  • Khalloufi M, Martínez-Andújar C, Lachaâl M, Karray-Bouraoui N, Pérez-Alfocea F, Albacete A (2017) The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance. J Plant Physiol 214:134–144. https://doi.org/10.1016/j.jplph.2017.04.012

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy R, Kim K, Kim C, Sa T (2014) Changes of arbuscular mycorrhizal traits and community structure with respect to soil salinity in a coastal reclamation land. Soil Biol Biochem 72:1–10. https://doi.org/10.1016/j.soilbio.2014.01.017

    Article  CAS  Google Scholar 

  • Kusvuran S (2010) Relationships between Physiological Mechanisms of Tolerances to Drought and Salinity in Melons. Cukurova University Institute of Natural and Applied Sciences (Ph.D. Thesis) Adana, (in Turkish).

  • Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010) Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 333(1):117–128. https://doi.org/10.1007/s11104-010-0327-0

    Article  CAS  Google Scholar 

  • Mau AE, Utami SR (2014) Effects of biochar amendment and arbuscular mycorrhizal fungi inoculation on availability of soil phosphorus and growth of maize. J Degraded Min Lands Manag 1(2):69–74. https://doi.org/10.15243/jdmlm.2014.012.069

    Article  Google Scholar 

  • Ndiate NI, Zaman QU, Francis IN, Dada OA, Rehman A, Asif M, Haider FU (2022) Soil amendment with arbuscular mycorrhizal fungi and biochar improves salinity tolerance, growth, and lipid metabolism of common wheat (Triticum aestivum L.). Sustainability 14(6):3210. https://doi.org/10.3390/su14063210

    Article  CAS  Google Scholar 

  • Okay CÖ (2019) Molecular characterization of qualified pepper breeding lines in terms of genetics and resistance to some viral diseases (Master’s thesis, Institute of Science and Technology).

  • Ortas I, Sari N, Akpinar Ç, Yetisir H (2011) Screening mycorrhiza species for plant growth, P and Zn uptake in pepper seedling grown under greenhouse conditions. Sci Hortic 128(2):92–98. https://doi.org/10.1016/j.scienta.2010.12.014

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044. https://doi.org/10.1093/jxb/ers126

    Article  CAS  PubMed  Google Scholar 

  • Şavur OB (2015) Some Development and Yield Parameters of Tomato (Solanum lycopersicum L.) Arbuscular Mycorrhiza (ampf) and Salicylic Acid Applications against Tomato Root and Collar Rot Disease (Fusarium oxysporum f.sp. radicis- lycopersici jarvis & shoemaker). Effect on Disease Severity. (Doctoral dissertation). YYU, Institute of Science and Technology, Van.

  • Schüßler A, Walker C (2010) The Glomeromycota: A species list with new families and new genera (Published in December 2010 in libraries at The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University. Electronic copy freely available online at http://www.amf-phylogeny.com)

  • Shams M (2019) The Effect of Salt Stress on Plant Growth, Physiological and Biochemical Properties, DNA Methylation and Seed Germination in Pepper (doctoral dissertation). Ataturk University, Institute of Science and Technology, Erzurum.

  • Siebrecht N (2020) Sustainable agriculture and its implementation gap—Overcoming obstacles to implementation. Sustainability 12(9):3853. https://doi.org/10.3390/su12093853

    Article  Google Scholar 

  • Singh A, Sharma R, Pant D, Malaviya P (2021) Engineered algal biochar for contaminant remediation and electrochemical applications. Sci Total Environ 774:145676. https://doi.org/10.1016/j.scitotenv.2021.145676

    Article  CAS  Google Scholar 

  • Turkmen O, Sensoy S, Demir S, Erdinc C (2008) Effects of two different AMF species on growth and nutrient content of pepper seedlings grown under moderate salt stress. Afr J Biotechnol 7(4):392–396. (http://www.academicjournals.org/AJB)

    CAS  Google Scholar 

  • U.S. Salinity Laboratory Staff (1954) Diagnosis and improvement of saline and alkali soils. USDA Hdbk. 60, p 160

    Google Scholar 

  • Villani A, Tommasi F, Paciolla C (2021) The arbuscular mycorrhizal fungus Glomus viscosum improves the tolerance to Verticillium wilt in artichoke by modulating the antioxidant defense systems. Cells 10(8):1944. https://doi.org/10.3390/cells10081944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhou P, Baı L, Wu K, Xıng D, Guo T, Zhang C (2020) Effects of biochar and arbuscular mycorrhizal fungi on the growth of continuous cropping pepper and soil nutrient status. Chin J Eco Agriculture 28(10):1600–1608

    CAS  Google Scholar 

  • Wen Z, Chen Y, Liu Z, Meng J (2022) Biochar and arbuscular mycorrhizal fungi stimulate rice root growth strategy and soil nutrient availability. Eur J Soil Biol 113:1–10. https://doi.org/10.1016/j.ejsobi.2022.103448

    Article  CAS  Google Scholar 

  • Xiu L, Zhang W, Wu D, Sun Y, Zhang H, Gu W, Wang Y, Meng J, Chen W (2021) Biochar can improve biological nitrogen fixation by altering the root growth strategy of soybean in Albic soil. Sci Total Environ 773:144564. https://doi.org/10.1016/j.scitotenv.2020.144564

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki S, Dillenburg LR (1999) Measurements of leaf relative water content in Araucaria angustifolia. Rev Brasil Fisiol Veg 11(2):69–75

    Google Scholar 

  • Zheng H, Wang X, Chen L, Wang Z, Xia Y, Zhang Y, Xing B (2018) Enhanced growth of halophyte plants in biochar-amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation. Plant Cell Environ 41(3):517–532. https://doi.org/10.1111/pce.12944

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is a part of Ph.D. thesis of first author and authors are grateful for the financial support provided for this research by Van YuzuncuYil University Scientific Search Project Department (#FDK-2020-8903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasret Gunes.

Ethics declarations

Conflict of interest

H. Gunes, S. Demir, C. Erdinc and M.A. Furan declare that they have no competing interests.

Ethical standards

Research involving human participants and/or animals: Not applicable. The research involved no human participants or animals.

Additional information

The original online version of this article was revised: The term “Capsicum annuum L.” was displayed incorrectly.

Rights and permissions

Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunes, H., Demir, S., Erdinc, C. et al. Effects of Arbuscular Mycorrhizal Fungi (AMF) and Biochar On the Growth of Pepper (Capsicum annuum L.) Under Salt Stress. Gesunde Pflanzen 75, 2669–2681 (2023). https://doi.org/10.1007/s10343-023-00897-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-023-00897-2

Keywords

Navigation