Skip to main content

Advertisement

Log in

Long-term study of above- and below-ground biomass production in relation to nitrogen and carbon accumulation dynamics in a grey alder (Alnus incana (L.) Moench) plantation on former agricultural land

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

In the Northern and Baltic countries, grey alder is a prospective tree species for short-rotation forestry. Hence, knowledge about the functioning of such forest ecosystems is critical in order to manage them in a sustainable and environmentally sound way. The 17-year-long continuous time series study is conducted in a grey alder plantation growing on abandoned agricultural land. The results of above- and below-ground biomass and production of the 17-year-old stand are compared to the earlier published respective data from the same stand at the ages of 5 and 10 years. The objectives of the current study were to assess (1) above-ground biomass (AGB) and production; (2) below-ground biomass: coarse root biomass (CRB), fine root biomass (FRB) and fine root production (FRP); (3) carbon (C) and nitrogen (N) accumulation dynamics in grey alder stand growing on former arable land. The main results of the 17-year-old stand were as follows: AGB 120.8 t ha−1; current annual increment of the stem mass 5.7 t ha year−1; calculated CRB 22.3 t ha−1; FRB 81 ± 10 g m−2; nodule biomass 31 ± 19 g m−2; fine root necromass 11 ± 2 g m−2; FRP 53 g DM m−2 year−1; fine root turnover rate 0.54 year−1; and fine root longevity 1.9 years. FRB was strongly correlated with the stand basal area and stem mass. Fine root efficiency was the highest at the age of 10 years; at the age of 17 years, it had slightly reduced. Grey alder stand significantly increased N and Corg content in topsoil. The role of fine roots for the sequestration of C is quite modest compared to leaf litter C flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahlström K, Persson H, Börjesson I (1988) Fertilization in a mature Scots pine (Pinus sylvestris L.) stand: effects on fine roots. Plant Soil 106:179–190

    Article  Google Scholar 

  • Akkermans ADL, van Dijk C (1976) The formation and nitrogen-fixing activity of the root nodules of Alnus glutinosa under field conditions. In: Nutman PS (ed) Symbiotic nitrogen fixation in plants. Cambridge University Press, London, pp 511–520

    Google Scholar 

  • Aosaar J, Uri V (2008) The biomass production of grey alder, hybrid alder and silver birch stands growing on abandoned agricultural land. Metsanduslikud Uurimused 48:53–66 (In Estonian)

    Article  Google Scholar 

  • Aosaar J, Varik M, Lõhmus K, Uri V (2011) Stemwood density in young grey alder (Alnus incana (L.) Moench) and hybrid alder (Alnus hybrida A. Br.) stands growing on abandoned agricultural land. Balt For 17(2):256–261

    Google Scholar 

  • Aosaar J, Varik M, Uri V (2012) Biomass production potential of grey alder (Alnus incana (L.) Moench.) in Scandinavia and Eastern Europe: a review. Biomass Bioenergy 45:11–26

    Article  Google Scholar 

  • Astover A, Roostalu H, Lauringson E, Lemetti I, Selge A, Talgre L et al (2006) Changes in agricultural land use and in plant nutrient balances of arable soils in Estonia. Arch Acker Pfl Boden 52:223–231

    Google Scholar 

  • Baker DD, Schwintzer CR (1990) Introduction. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic Press, Inc., Tokyo, pp 1–13

    Google Scholar 

  • Binkley D (2005) How nitrogen fixing trees change soil carbon. In: Binkley D, Menyailo O (eds) Tree Species effects on soils: implications for global change. NATO Sciences Series. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Björklund T, Ferm A (1982) Pienikokoisen koivun ja harmaalepan biomassa ja tekniset ominaisuudet. Summary: biomass and technical properties of small-sized birch and grey alder. Folia Forestalia 500:1–37

    Google Scholar 

  • Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants-an economic analogy. Ann Rev Ecol Syst 16:363–393

    Google Scholar 

  • Bond G, Fletcher WW, Ferguson TP (1954) The development and function of the root nodules of Alnus, Myrica and Hippophae. Plant Soil 5:309–323

    Article  Google Scholar 

  • Bormann BT, Gordon JC (1984) Stand density effects in young red alder plantations: productivity, photosynthate partitioning, and nitrogen fixation. Ecology 65:394–402

    Article  Google Scholar 

  • Brunner I, Godbold DL (2007) Tree roots in a changing world. J For Res 12:78–82

    Article  Google Scholar 

  • Campbell JE, Lobell DB, Robert CG, Field CF (2008) The global potential of bioenergy on abandoned agriculture lands. Environ Sci Technol 242:5791–5794

    Article  Google Scholar 

  • Coleman M (2007) Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization. Plant Soil 299:195–213

    Article  CAS  Google Scholar 

  • Daugavietis M, Daugaviete M, Bisenieks J (2009) Management of grey alder (Alnus incana Moench.) stands in Latvia. Engineering for rural development. Jelgava, 28–29.05.2009

  • Dawson JO (2008) Ecology of actinorhizal plants. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing actinorhizal symbioses. Springer, Dordrecht, pp 119–234

    Google Scholar 

  • Directive 2009/28/EC. On the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.2009.04.23. Off J Eur Union 2009. 140:16–62

    Google Scholar 

  • Elowson S, Rytter L (1993) Spatial distribution of roots and root nodules and total biomass production in a grey alder plantation on sandy soil. Biomass Bioenergy 5(2):127–135

    Article  Google Scholar 

  • Fairley RI, Alexander IJ (1985) Methods of calculating fine root production in forests. In: AH Fitter (ed) Ecological interactions in soil. Special Publication of the British Ecological Society No. 4, pp 37–42

  • FAO (2008) Fighting food inflation through sustainable investment: grain production and export potential in CIS countries-rising food prices: causes, consequences and policy responses. Rome: Food and Agriculture Organization of the United Nations, p. 16 Sponsored by the European Bank for Reconstruction and development and the FAO

  • Finer L, Helmisaari HS, Lõhmus K, Majdi H, Brunner I, Bųrja I, Eldhuset E, Godbold D et al (2007) Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.). Plant Biosyst 141:394–405

    Article  Google Scholar 

  • Finer L, Ohashi M, Noguci K, Hirano Y (2011a) Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. For Ecol Manag 262:2008–2023

    Article  Google Scholar 

  • Finer L, Ohashi M, Noguchi K, Hirano Y (2011b) Factors causing variation in fine root biomass in forest ecosystems. For Ecol Manag 261:265–277

    Article  Google Scholar 

  • Fisher RF (1995) Amelioration of degraded rain forest soils by plantations of native trees. Soil Sci Soc Am J 59:544–549

    Article  CAS  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31

    Article  Google Scholar 

  • Graefe S, Hertel D, Leuschner CH (2010) N, P and K limitation of fine root growth along an elevation transect in tropical mountain forests. Acta Oecol 36:537–542

    Article  Google Scholar 

  • Granhall U (1994) Biological fertilization. Biomass Bioenergy 6(1–2):81–91

    Article  Google Scholar 

  • Granhall U, Verwijst T (1994) Grey alder (Alnus incana) a N2-fixing tree suitable for energy forestry. In: Hall DO, Grassi G, Scheer H (eds) Biomass for energy and industry. Ponte Press, Bochum, pp 409–413

    Google Scholar 

  • Hall DO, House JI (1994) Trees and biomass energy: carbon storage and (or) fossil fuel substitution? Biomass Bioenergy 6(1–2):11–30

    Article  CAS  Google Scholar 

  • Helmisaari HS, Makkonen K, Kellomäki S, Valtonen E, Mälkönen E (2002) Below-and aboveground biomass, production and nitrogen use in Scots pine stands in eastern Finland. For Ecol Manag 165:317–326

    Article  Google Scholar 

  • Helmisaari HS, Derome J, Nöjd P, Kukkola M (2007) Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands. Tree Physiol 27:1493–1504

    Article  PubMed  CAS  Google Scholar 

  • Hendricks JJ, Hendrick RL, Wilson CA, Mitchell RJ, Pecot SD, Guo D (2006) Assessing the patterns and controls of fine root dynamics: an empirical test and methodological view. J Ecol 94:40–57

    Article  Google Scholar 

  • Henebry GM (2009) Carbon in idle croplands. Nature 457:1089–1090

    Article  PubMed  CAS  Google Scholar 

  • Hertel D, Leuschner CA (2002) Comparison of four different fine root production estimates with ecosystem carbon balance data in a FagusQuercus mixed forest. Plant Soil 239:237–251

    Article  CAS  Google Scholar 

  • Hirano Y, Noguchi K, Ohashi M, Hishi T, Makita N, Fujii S, Finér L (2009) A new method for placing and lifting root meshes for estimating fine root production in forest eco-systems. Plant Root 3:26–31

    Article  Google Scholar 

  • Huss-Danell K (1997) Tansley review NO. 93 Actinorhizal symbioses and their N2 fixation. New Phytol 136:375–405

    Article  CAS  Google Scholar 

  • Hytönen J, Saarsalmi A (2009) Long-term biomass production and nutrient uptake of birch, alder and willow plantations on cut-away peatland. Biomass Bioenergy 33(9):1197–1211

    Article  Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci USA 94:7362–7366

    Article  PubMed  CAS  Google Scholar 

  • Johansson T (2000) Biomass equations for determining fractions of common and grey alders growing on abandoned farmland and some practical implications. Biomass Bioenergy 18(2):147–159

    Article  Google Scholar 

  • Johansson T (2005) Stem volume equations and basic density for grey alder and common alder in Sweden. Forestry 78(3):249–262

    Article  Google Scholar 

  • Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manag 140:227–238

    Article  Google Scholar 

  • Johnsrud SC (1978) Nitrogen fixation by root nodules of Alnus incana in a Norwegian forest ecosystem. Oikos 30:475–479

    Article  Google Scholar 

  • Kalliokoski T, Pennanen T, Nygren P, Sievänen R, Helmisaari HS (2010) Belowground interspecific competition in mixed boreal forests: fine root and ectomycorrhiza characteristics along stand developmental stage and soil fertility gradients. Plant Soil 330:73–89

    Article  CAS  Google Scholar 

  • King JS, Albaugh TJ, Allen HL, Buford M, Strain BR, Dougherry P (2002) Belowground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytol 154:389–398

    Article  Google Scholar 

  • Leuchner C, Hertel D, Schmid I, Koch O, Muhs A, Hölscher D (2004) Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant Soil 258:43–56

    Article  Google Scholar 

  • Liski J, Pussinen A, Pingoud K, Mäkipää R, Karjalainen T (2001) Which rotation length is favorable to carbon sequestration? Can J For Res 31:2004–2013

    Article  Google Scholar 

  • Lõhmus K, Mander Ü, Tullus H, Keedus K (1996) Productivity, buffering capacity and resources of grey alder forests in Estonia. In: Perttu K, Koppel A (eds) Short rotation willow coppice for renewable energy and improved environment, pp 95–105

  • Lõhmus K, Truu M, Truu J, Ostonen I, Kaar E, Vares A et al (2006) Functional diversity of culturable bacterial communities in the rhizosphere in relation to fine-root and soil parameters in alder stands on forest, abandoned agricultural, and oilshale areas. Plant Soil 283(1–2):1–10

    Article  Google Scholar 

  • Lukac M, Godbold DL (2010) Fine root biomass and turnover in southern taiga estimated by root inclusion nets. Plant Soil 331:505–513

    Article  CAS  Google Scholar 

  • Majdi H, Nylund JE (1996) Does liquid fertilisation affect life span of mycorrhizal short roots and fine root dynamics? Plant Soil 185:305–309

    Article  CAS  Google Scholar 

  • Majdi H, Pregitzer K, Moren AS, Nylund JE, Agren GI (2005) Measuring fine root turnover in forest ecosystems. Plant Soil 276:1–8

    Google Scholar 

  • Makita N, Hirano Y, Mizoguchi T, Kominami Y, Dannoura M, Ishii H, Finer L, Kanazawa Y (2011) Very fine roots respond to soil depth: biomass allocation, morphology, and physiology in a broad-leaved temperate forest. Ecol Res 26:95–104

    Article  Google Scholar 

  • Makkonen K, Helmisaari HS (1999) Assessing Scots pine fine root biomass: comparison of soil core and root ingrowth core methods. Plant Soil 210:43–50

    Article  CAS  Google Scholar 

  • Mander Ü, Palang H (1994) Changes of landscape structure in Estonia during the Soviet period. GeoJournal 33:45–54

    Article  Google Scholar 

  • Mander Ü, Lõhmus K, Teiter S, Uri V, Augustin J (2008) Gaseous nitrogen and carbon fluxes in riparian alder stands. Boreal Environ Res 13(3):231–241

    CAS  Google Scholar 

  • Messier C, Puttonen P (1993) Coniferous and non-coniferous fine-root and rhizome production in Scots pine stands using the ingrowth bag method. Silva Fenn 27(3):209–217

    Google Scholar 

  • Miežite O, Dreimanis A (2006) Investigations of grey alder (Alnus incana L. Moench) biomass. In: proceeding of the international scientific conference on research forest rural development, pp 271–275

  • Nikolova PS, Raspe S, Andersen CP, Mainiero R, Blaschke H, Matyssek R, Häberle KH (2009) Effects of the extreme drought in 2003 on soil respiration in a mixed forest. Eur J For Res 128:87–98

    Article  Google Scholar 

  • Ostonen I, Lõhmus I, Pajuste K (2005) Fine root biomass, production and its proportion of NPP in a fertile middle-aged Norway spruce forest: comparison of soil core and ingrowth core methods. For Ecol Manag 212:264–277

    Article  Google Scholar 

  • Ostonen I, Helmisaari HS, Borken W, Tedersoo L, Kukumägi M, Bahram M, Lindroos AJ, Nöjd P, Uri V, Merilä P, Asi E, Lõhmus K (2011) Fine root foraging strategies in Norway spruce forests across a European climate gradient. Glob Change Biol 17:3620–3632

    Article  Google Scholar 

  • Persson HA (1983) The distribution and productivity of fine roots in boreal forests. Plant Soil 71:87–101

    Article  Google Scholar 

  • Rytter L (1989) Distribution of roots and root nodules and biomass allocation in young intensively managed gray alder stands on a peat bog. Plant Soil 119:71–79

    Article  Google Scholar 

  • Rytter L (1995) Effects of thinning on the obtainable biomass, stand density, and tree diameters of intensively grown grey alder plantations. For Ecol Manag 73:133–143

    Article  Google Scholar 

  • Rytter L (1996) The potential of grey alder plantation forestry. In: Perttu K, Koppel A (eds) Short rotation willow coppice for renewable energy and improved environment. Swedish University of Agricultural Sciences, Uppsala, pp 89–94

    Google Scholar 

  • Rytter L, Sennerby-Forsse L, Alrikson A (2000) Natural regeneration of grey alder (Alnus incana (L.) Moench.) stands after harvest. In: Mitchell AK, Puttonen P, Stoehr M, Hawkins BJ (eds) Frontiers of forest biology: proceedings of the 1998 Joint Meeting of the North American Forest Biology Workshop and the Western Forest Genetics Association. The Haworth Press, pp 287–94

  • Saarsalmi A (1995) Nutrition of deciduous tree species grown in short rotation stands. Dissertation, University of Joensuu, Finland

  • Saarsalmi A, Palmgren K, Levula T (1985) Leppaviljelmän biomassan tuotos sekä ravinteiden ja vedenkäyttö. Folia Forestalia 628:24

    Google Scholar 

  • Sakai Y, Takahoshi M, Tanaka N (2007) Root biomass and distribution of a Picea-Abies stand and a Larix-Betula stand in pumiceous Entisol in Japan. J For Res 12:120–125

    Article  Google Scholar 

  • Scott AN, Binkley D (1997) Foliage litter quality and annual net N mineralization: comparison across North American forest sites. Oecologia 111:151–159

    Article  Google Scholar 

  • Sharma E, Ambasht RS (1986) Root nodule age-class transition, production and decomposition in an age sequence of Alnus nepalensis plantation stands in the eastern Himalayas. J Appl Ecol 23:689–701

    Article  Google Scholar 

  • Son Y, Lee YY, Lee CY, Yi MJ (2007) Nitrogen fixation, soil nitrogen availability, and biomass in pure and mixed plantations of alder and pine in central Korea. J Plant Nutr 30:1841–1853

    Article  CAS  Google Scholar 

  • Strand AE, Pritchard SG, McCormack ML, Davis MA, Oren R (2008) Irreconcilable differences: fine-root life spans and soil carbon persistence. Science 319:456–458

    Article  PubMed  CAS  Google Scholar 

  • Tateno R, Hishi T, Takeda H (2004) Above- and belowground biomass and net primary production in a cool-temperate deciduous forest in relation to topographical changes in soil nitrogen. For Ecol Manag 193:297–306

    Article  Google Scholar 

  • Telenius BF (1999) Stand growth of deciduous pioneer tree species on fertile agricultural land in southern Sweden. Biomass Bioenergy 16:13–23

    Article  Google Scholar 

  • Tjepkema JD, Schwintzer CR, Benson DR (1986) Physiology of actinorhizal nodules. Annu Rev Plant Physiol Plant Mol Biol 37:209–232

    Article  CAS  Google Scholar 

  • Tobita H, Hasegawa SF, Tian X, Nanami S, Takeda H (2010) Spatial distribution and biomass of root nodules in a naturally regenerated stand of Alnus hirsuta (Turcz.) var Sibirica. Symbiosis 50:77–86

    Article  Google Scholar 

  • Tullus H, Uri V, Lõhmus K, Mander Ü, Keedus K (1998) Halli lepa majandamine ja ökoloogia [Managenent and ecology of Grey Alder]. PAAR, Tartu, p 35 (In Estonian)

    Google Scholar 

  • Tuskan GA, Walsh ME (2001) Short-rotation woody crop systems, atmospheric carbon dioxide and carbon management: a U.S. case study. For Chron 77:259–264

    Google Scholar 

  • Uri V, Tullus H, Lõhmus K (2002) Biomass production and nutrient accumulation in short-rotation grey alder (Alnus incana (L.) Moench) plantation on abandoned agricultural land. For Ecol Manag 161(1–3):169–179

    Article  Google Scholar 

  • Uri V, Lõhmus K, Tullus H (2003) Nutrient allocation, accumulation and aboveground biomass in grey alder and hybrid alder plantations. Silva Fennica 37(3):301–311

    Google Scholar 

  • Uri V, Lõhmus K, Kiviste A, Aosaar J (2009) The dynamics of biomass production in relation to foliar and root traits in a grey alder (Alnus incana (L.) Moench) plantation on abandoned agricultural land. Forestry 82(1):61–74

    Article  Google Scholar 

  • Uri V, Lõhmus K, Mander Ü, Ostonen I, Aosaar J, Maddison M, Helmisaari HS, Augustin J (2011) Long-term effects on the nitrogen budget of a short-rotation grey alder (Alnus incana (L.) Moench) forest on abandoned agricultural land. Ecol Eng 37:920–930

    Article  Google Scholar 

  • Vares A, Uri V, Tullus H, Kanal A (2003) Height growth of four fast-growing deciduous tree species on former agricultural lands in Estonia. Baltic For 9(1):2–8

    Google Scholar 

  • Vervaet H, Massart B, Boeckx P, Van Cleemput O, Hofman G (2002) Use of principal component analysis to assess factors controlling net N mineralization in deciduous and coniferous forest soils. Biol Fertil Soils 36:93–101

    Article  CAS  Google Scholar 

  • Vogt KA, Persson H (1991) Root methods. In: Lassoie JP, Hinckley TM (eds) Techniques and approaches in forest tree ecophysiology. CRC Press, Boca Raton, pp 477–502

    Google Scholar 

  • Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187:159–219

    Article  CAS  Google Scholar 

  • Vogt KA, Vogt DJ, Bloomfield J (1998) Analysis of some direct and indirect methods for estimating root biomass and production. Plant Soil 200:71–89

    Article  CAS  Google Scholar 

  • Weih M (2004) Intensive short rotation forestry in boreal climates: present and future perspectives. Can J For Res 34:1369–1378

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Estonian Science Foundation grant No. 9342 and by the Environmental Investment Centre projects No. 11-10-8/196 and No. 3406. We would like thank Ms. Ragne Rambi for revising the English text of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Aosaar.

Additional information

Communicated by C. Ammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aosaar, J., Varik, M., Lõhmus, K. et al. Long-term study of above- and below-ground biomass production in relation to nitrogen and carbon accumulation dynamics in a grey alder (Alnus incana (L.) Moench) plantation on former agricultural land. Eur J Forest Res 132, 737–749 (2013). https://doi.org/10.1007/s10342-013-0706-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-013-0706-1

Keywords

Navigation