Skip to main content

Advertisement

Log in

Virus-induced changes in host plant phenotype cue behavioral changes in Aphis glycines that enhance acquisition and transmission of soybean mosaic virus

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Vector-borne viruses can modify the phenotype of their host plants to manipulate the behavior of their vectors and maximize their dissemination. The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a primary vector of soybean mosaic virus (SMV), a non-persistent potyvirus that is a serious disease of soybean. We investigated mechanisms by which SMV changes A. glycines feeding and dispersal behavior via virus-induced modifications of plant phenotype. These changes affect gustatory, visual and olfactory cues that alter the behavior of both viruliferous and virus-free aphids to enhance virus acquisition and transmission. SMV-infected soybean seedlings exhibited up-regulation of the amino acids threonine and tyrosine which rendered viruliferous aphids more restless and prone to dispersal. Whereas dispersing viruliferous A. glycines preferred to settle and feed on virus-free soybean seedlings, virus-free aphids preferred SMV-infected seedlings. Volatile cues emanating from SMV-infected seedlings, primarily up-regulated methyl salicylate and down-regulated (Z)-3-hexen-1-ol, were implicated in repulsion of viruliferous aphids, whereas the mottled yellow coloration of SMV-infected seedlings was a visual attractant for aphids regardless of virus status. Our results reveal how a non-persistent virus uses multimodal 'push and pull' mechanisms to manipulate vector behavior for its own benefit, and suggests new avenues for exploring the mechanisms of altered behavior in viruliferous aphids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agnello AM, Combs DB, Filgueiras CC et al (2021) Reduced infestation by Xylosandrus germanus (Coleoptera: Curculionidae: Scolytinae) in apple trees treated with host plant defense compounds. J Econ Entomol 13:2162–2171

    Article  Google Scholar 

  • Allan SA, George J, Stelinski LL et al (2020) Attributes of yellow traps affecting attraction of Diaphorina citri (Hemiptera: Liviidae). Insects 11:452

    Article  PubMed  PubMed Central  Google Scholar 

  • Aragon WAR, Urquidez GAL, Camacho SAF et al (2020) Capture effect of yellow sticky traps covered with meshes of different colors and sizes on Bemisia tabaci (Hemiptera: Aleyrodidae) and nontarget organisms. Appl Entomol Zool 57:249–255

    Article  Google Scholar 

  • Bixenmann RJ, Coley PD, Phyllis D et al (2016) High herbivore pressure favors constitutive over induced defense. Ecol Evol 6:6037–6049

    Article  PubMed  PubMed Central  Google Scholar 

  • Bjordal M, Arquier N, Kniazeff J, Pin JP et al (2014) Sensing of amino acids in a dopaminergic circuitry promotes rejection of an incomplete diet in Drosophila. Cell 156:510–521

    Article  CAS  PubMed  Google Scholar 

  • Burrows MEL, Boerboom CM, Gaska JM et al (2005) The relationship between Aphis glycines and Soybean mosaic virus incidence in different pest management systems. Plant Dis 89:926–934

    Article  PubMed  Google Scholar 

  • Castle SJ, Mowry TM, Berger PH (1998) Differential settling by Myzus persicae (Homoptera: Aphididae) on various virus infected host plants. Ann Entomol Soc Am 91:661–667

    Article  Google Scholar 

  • Chesnais Q, Couty A, Uzest M et al (2019) Plant infection by two different viruses induce contrasting changes of vector fitness and behavior. Insect Sci 26:86–96

    Article  CAS  PubMed  Google Scholar 

  • Claudel P, Chesnais Q, Fouche Q et al (2018) The aphid-transmitted turnip yellows virus differentially affects volatiles emission and subsequent vector behavior in two Brassicaceae plants. Int J Mol Sci 19:2316

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon AFG (2000) Aphid ecology. Chapman and Hall, London, UK, p 300

    Google Scholar 

  • Donaldson JR, Gratton C (2007) Antagonistic effects of soybean viruses on soybean aphid performance. Environ Entomol 36:918–925

    Article  PubMed  Google Scholar 

  • Döring TF, Chittka L (2007) Visual ecology of aphids - a critical review on the role of colours in host finding. Arthropod Plant Interact 1:3–16

    Article  Google Scholar 

  • Eigenbrode SD, Ding H, Shiel P et al (2002) Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proc R Soc Lond B 269:455–460

    Article  CAS  Google Scholar 

  • Gadhave KR, Gautam S, Rasmussen DA et al (2020) Aphid transmission of Potyvirus: the largest plant-infecting RNA virus genus. Virus 12:773

    Article  CAS  Google Scholar 

  • Grandison RC, Piper MDW, Partridge L (2009) Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462:1061–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajimorad MR, Domier LL, Tolin SA et al (2018) Soybean mosaic virus: A successful potyvirus with a wide distribution but restricted natural host range. Mol Plant Pathol 19:1563–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie J, Isaacs R, Pickett JA et al (1994) Methyl salicylate and (−)-(1R,5S)-myrtenal are plant-derived repellents for black bean aphid Aphis fabae Scop. (Homoptera: Aphididae). J Chem Ecol 20:2847–2855

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand DF, Brown GC, Jackson DM et al (1993) Effects of some leaf-emitted volatile compounds on aphid population increase. J Chem Ecol 19:1875–1887

    Article  CAS  PubMed  Google Scholar 

  • Hogenhout SA, Ammar E, Whitfield A et al (2008) Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46:327–359

    Article  CAS  PubMed  Google Scholar 

  • Hu ZQ, Chai RR, Liu X et al (2022) Barley yellow dwarf virus-infected wheat plant modulated selection behavior of vector aphids. J Pest Sci 95:1273–1285

    Article  Google Scholar 

  • Ingwell L, Eigenbrode S, Bosque-Pérez N (2012) Plant viruses alter insect behavior to enhance their spread. Sci Rep 2:578

    Article  PubMed  PubMed Central  Google Scholar 

  • Irwin ME, Ruesink WG, Isard SA et al (2000) Mitigating epidemics caused by non-persistently transmitted aphid-borne viruses: the role of the pliant environment. Virus Res 71:185–211

    Article  CAS  PubMed  Google Scholar 

  • Islam W, Noman A, Naveed H et al (2020) Plant-insect vector-virus interactions under environmental change. Sci Total Environ 701:135044

    Article  CAS  PubMed  Google Scholar 

  • Jayasinghe WH, Akhter MS, Nakahara K, Maruthi MN (2022) Effect of aphid biology and morphology on plant virus transmission. Pest Manag Sci 78:416–427

    Article  CAS  PubMed  Google Scholar 

  • Joost P, Backus E, Morgan D et al (2006) Correlation of stylet activities by the glassy-winged sharpshooter, Homalodisca coagulata (Say), with electrical penetration graph (EPG) waveforms. J Insect Physiol 52:327–337

    Article  PubMed  Google Scholar 

  • Lefèvre T, Koella JC, Renaud F et al (2006) New prospects for research on manipulation of insect vectors by pathogens. PLoS Pathog 2:e72

    Article  PubMed  PubMed Central  Google Scholar 

  • Li K, Yang QH, Zhi HJ et al (2010) Identification and distribution of soybean mosaic virus strains in southern China. Plant Dis 94:351–357

    Article  CAS  PubMed  Google Scholar 

  • Li H, Liu XX, Liu XM et al (2018) Host plant infection by soybean mosaic virus reduces the fitness of its vector, Aphis glycines (Hemiptera: Aphididae). J Econ Entomol 111:2017–2023

    Article  PubMed  Google Scholar 

  • Li P, Liu C, Deng W et al (2019) Plant begomoviruses subvert ubiquitination to suppress plant defenses against insect vectors. PLoS Pathog 15:e1007607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao Y, Tan H, Jian G et al (2021) Herbivore-induced (Z)-3-Hexen-1-ol is an airborne signal that promotes direct and indirect defenses in Tea (Camellia sinensis) under light. J Agric Food Chem 69:12608–12620

    Article  CAS  PubMed  Google Scholar 

  • Loake G, Grant M (2007) Salicylic acid in plant defence-the players and protagonists. Curr Opin Plant Biol 10:466–472

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Li J, Bai R, Yan F (2021) EPG-recorded feeding behaviors reveal adaptability and competitiveness in two species of Bemisia tabaci (Hemiptera: Aleyrodidae). J Insect Behav 34:26–40

    Article  Google Scholar 

  • Luan J, Wang X, Colvin J et al (2014) Plant-mediated whitefly-begomovirus interactions: research progress and future prospects. Bull Entomol Res 104:267–276

    Article  PubMed  Google Scholar 

  • Martin B, Collar JL, Tjallingii WF et al (1997) Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. J Gen Virol 78:2701–2705

    Article  CAS  PubMed  Google Scholar 

  • Mathers TC, Mugford ST, Percival-Alwyn L et al (2019) Sex-specific changes in the aphid DNA methylation landscape. Mol Ecol 28:4228–4241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauck KE (2016) Variation in virus effects on host plant phenotypes and insect vector behavior: What can it teach us about virus evolution? Curr Opin Virol 21:114–123

    Article  PubMed  Google Scholar 

  • Mauck KE, De Moraes C, Mescher M (2010a) Effects of cucumber mosaic virus infection on vector and non-vector herbivores of squash. Commun Integr Biol 3:579–582

    Article  PubMed  PubMed Central  Google Scholar 

  • Mauck KE, De Moraes CM, Mescher MC (2010b) Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc Nat Acad Sci 107:3600–3605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauck KE, De Moraes CM, Mescher M (2014a) Biochemical and physiological mechanisms underlying effects of cucumber mosaic virus on host-plant traits that mediate transmission by aphid vectors. Plant Cell Environ 37:1427–1439

    Article  CAS  PubMed  Google Scholar 

  • Mauck KE, De Moraes CM, Mescher M (2014b) Evidence of local adaptation in plant virus effects on host-vector interactions. Integra Comp Biol 54:193–209

    Article  CAS  Google Scholar 

  • Mauck KE, Chesnais Q, Shapiro LR (2018) Evolutionary determinants of host and vector manipulation by plant viruses. Adv Virus Res 101:189–250

    Article  PubMed  Google Scholar 

  • Mauck KE, Kenney J, Chesnais Q (2019) Progress and challenges in identifying molecular mechanisms underlying host and vector manipulation by plant viruses. Curr Opin Insect Sci 33:7–18

    Article  PubMed  Google Scholar 

  • Mayo MA, Pringle CR (1998) Virus taxonomy-1997. J Gen Virol 79:649–657

    Article  CAS  PubMed  Google Scholar 

  • McMenemy LS, Hartley SE, Macfarlane SA et al (2012) Raspberry viruses manipulate the behaviour of their insect vectors. Entomol Exp App 144:56–68

    Article  CAS  Google Scholar 

  • Medina-Ortega KJ, Bosque-Perez NA, Ngumbi E et al (2009) Rhopalosiphum padi (Hemiptera: Aphididae) responses to volatile cues from barley yellow dwarf virus-infected wheat. Environ Entomol 38:836–845

    Article  CAS  PubMed  Google Scholar 

  • Moreno A, Tjallingii WF, Fernandez-Mata G et al (2012) Differences in the mechanism of inoculation between a semi-persistent and a non-persistent aphid-transmitted plant virus. J Gen Virol 93:662–667

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Delafuente A, Garzo E, Moreno A et al (2013) A plant virus manipulates the behavior of its whitefly vector to enhance its transmission efficiency and spread. PLoS ONE 8:e61543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moury B, Desbiez C (2020) Host range evolution of potyviruses: A global phylogenetic analysis. Viruses 12:111

    Article  PubMed  PubMed Central  Google Scholar 

  • Ng JCK, Falk BW (2006) Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu Rev Phytopathol 44:183–212

    Article  CAS  PubMed  Google Scholar 

  • Ngumbi E, Eigenbrode SD, Bosque-Pérez NA et al (2007) Myzus persicae is attracted more by blends than by individual compounds elevated in headspace of PLRV-infected potato. J Chem Ecol 33:1733–1747

    Article  CAS  PubMed  Google Scholar 

  • Pedersen P, Grau C, Cullen E et al (2007) Potential for integrated management of soybean virus disease. Plant Dis 91:1255–1259

    Article  CAS  PubMed  Google Scholar 

  • Perring T, Gruenhagen N, Farrar C (1999) Management of plant viral diseases through chemical control of insect vectors. Annu Rev Entomol 44:457–481

    Article  CAS  PubMed  Google Scholar 

  • Pettersson J, Tjallingi WF, Hardie J (2007) Host-plant selection and feeding. In: van Emden HF, Harrington R (eds) Aphids as crop pests. CAB International, Oxfordshire, UK, pp 87–113

    Chapter  Google Scholar 

  • Ragsdale DW, Landis DA, Brodeur J et al (2011) Ecology and management of the soybean aphid in North America. Annu Rev Entomol 56:375–399

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Casteel CL (2022) Effector-mediated plant-virus-vector interactions. Plant Cell 34:1514–1531

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivera MJ, Martini X, Conover D et al (2020) Evaluation of semiochemical based push-pull strategy for population suppression of ambrosia beetle vectors of laurel wilt disease in avocado. Sci Rep 14:2670

    Article  Google Scholar 

  • Sandanayaka WRM, Jia Y, Charles JG (2013) EPG technique as a tool to reveal host plant acceptance by xylem sap-feeding insects. J Appl Entomol 137:519–529

    Article  Google Scholar 

  • Sasaki T, Hayashi H, Ishikawa H (1991) Growth and reproduction of the symbiotic and aposymbiotic pea aphids, Acyrthosiphon pisua maintained on artificial diets. J Insect Physiol 37:749–756

    Article  CAS  Google Scholar 

  • Shoemaker LG, Hayhurst E, Weiss-Lehman CP et al (2019) Pathogens manipulate the preference of vectors, slowing disease spread in a multi-host system. Ecol Lett 22:1115–1125

    Article  PubMed  Google Scholar 

  • Su Q, Preisser EL, Zhou X et al (2015) Manipulation of host quality and defense by a plant virus improves performance of whitefly vectors. J Econ Entomol 108:11–19

    Article  PubMed  Google Scholar 

  • Todd J, Rouf Mian M, Backus E et al (2016) Feeding behavior of soybean aphid (Hemiptera: Aphididae) biotype 2 on resistant and susceptible soybean. J Econ Entomol 109:426–433

    Article  CAS  PubMed  Google Scholar 

  • Trbicki P, Harding RM, Powell KS (2009) Anti-metabolic effects of Galanthus nivalis agglutinin and wheat germ agglutinin on nymphal stages of the common brown leafhopper using a novel artificial diet system. Entomol Exp Appl 131:99–105

    Article  Google Scholar 

  • van Munster M (2020) Impact of abiotic stresses on plant virus transmission by aphids. Virus 12:216

    Article  Google Scholar 

  • Wang RY, Ghabrial SA (2002) Effect of aphid behavior on efficiency of transmission of soybean mosaic virus by the soybean-colonizing aphid, Aphis glycines. Plant Dis 86:1260–1264

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Kang L (2011) Roles of (Z)-3-hexenol in plant-insect interactions. Plant Signal Behav 6:369–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wille B, Hartman G (2008) Evaluation of artificial diets for rearing Aphis glycines (Hemiptera: Aphididae). J Econ Entomol 101:1228–1232

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Qi T, Li W et al (2017) Viral effector protein manipulates host hormone signaling to attract insect vectors. Cell Res 27:402–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wylie SJ, Adams M, Chalam C et al (2017) ICTV virus taxonomy profile: Potyviridae. J Gen Virol 98:352–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Zhang Q, Yao Q et al (2020) Direct and indirect plant defenses induced by (Z)-3-hexenol in tomato against whitefly attack. J Pest Sci 93:1243–1254

    Article  Google Scholar 

  • Yuan H, Cao G, Hou X et al (2022) Development of a widely targeted volatiomics method for profiling volatilomes in plants. Mol Plant 15:189–202

    Article  CAS  PubMed  Google Scholar 

  • Zahedi A, Razmjou J, Rafiee-Dastjerdi H et al (2019) Tritrophic interactions of cucumber cultivar, Aphis gossypii (Hemiptera: Aphididae), and its predator Hippodamia variegata (Coleoptera: Coccinellidae). J Econ Entomol 112:1774–1779

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (grant 31972278) for Zhen Li, and also supported by the General Project of Science and Technology Plan of Beijing Municipal Education Commission (KM202212448003) and the National Natural Science Foundation of China (grant 32001571) for Le Gao. We would like to thank Pro. Haijian Zhi and Dr. Kai Li from the Nanjing Agricultural University for providing the soybean cv. Nannong 1138-2 and SMV strain SC7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Li.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Communicated by Orlando Campolo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10340_2023_1718_MOESM1_ESM.tif

Relative expression levels of the SMV coat protein (cp) in A. glycines at various times after feeding on SMV-infected soybean plants (A), and in various body parts (B). Columns bearing different letters were significantly different (one-way ANOVA followed by Fisher′s LSD (α= 0.05) (TIF 10261 kb)

10340_2023_1718_MOESM2_ESM.tif

Percentages of viruliferous A. glycines fourth instars remaining on SMV-infected leaf discs (A), or seedlings (B) at different times post-release. *, Log-rank test, P < 0.05 (TIF 8184 kb)

10340_2023_1718_MOESM3_ESM.tif

Schematic diagram of the experimental procedure for choice tests in which fourth instar A. glycines were provided a choice between either SMV-infected or uninfected leaf discs (A), or soybean seedlings (B). (TIF 23577 kb)

10340_2023_1718_MOESM4_ESM.tif

Schematic diagram of the experimental procedure for choice tests in which fourth instar A. glycines were provided a choice between either green or mottled yellow paper sections (TIF 8335 kb)

10340_2023_1718_MOESM5_ESM.tif

Schematic diagram of the experimental procedure in which A. glycines were fed artificial diets presented in a sachet of parafilm (TIF 14052 kb)

10340_2023_1718_MOESM6_ESM.tif

Schematic diagram of the apparatus used for EPG recording of A. glycines feeding behavior, with an example of a feeding observation and expanded close-ups of the various behaviors distinguished: non penetration waves (np), potential drops (pd), waveform C, and waveform E (TIF 16023 kb)

10340_2023_1718_MOESM7_ESM.tif

Schematic diagram of the Petri dish arena in which A. glycines were tested for response to various VOCs presented on balls of cotton placed above soybean leaf discs (TIF 11911 kb)

10340_2023_1718_MOESM8_ESM.tif

Mean (±SE) durations of np waveforms (A), number of potential drops (B), durations of C waveforms (C), and durations of E waveforms (D) when virus-free A. glycines fed on SMV-infected or uninfected soybean seedlings. *, Student′s t-test, P < 0.05. (TIF 20088 kb)

Supplementary file9 (DOCX 16 kb)

Supplementary file10 (DOCX 12 kb)

Supplementary file11 (XLSX 19 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, H., Gao, L., Michaud, J.P. et al. Virus-induced changes in host plant phenotype cue behavioral changes in Aphis glycines that enhance acquisition and transmission of soybean mosaic virus. J Pest Sci (2024). https://doi.org/10.1007/s10340-023-01718-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10340-023-01718-1

Keywords

Navigation