Skip to main content
Log in

Attraction behaviors of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) to synthetic volatiles emitted by insect-damaged carrot roots

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Entomopathogenic nematodes (EPNs) play a role in indirect defenses of plants under attack by root herbivores. We have tested the chemotactic responses of 4 EPN species (Steinernema feltiae, S. carpocapsae, S. kraussei, and Heterorhabditis bacteriophora) to 5 compounds ([1] α-Pinene, [2] Terpinolene, [3] Bornyl acetate, [4] 2-Ethyl-hexanol, and [5] 2, 4-Di-tert-butylphenol) released by damaged (3, 4, 5) and undamaged (1, 2) carrot roots. We hypothesized that the EPN directional responses to the tested volatile compounds (VOCs) could be related to foraging strategy and would vary among species, VOC, and VOC concentrations. Our results indicate that all of the tested EPN species exhibited a weak attraction or repulsion to volatiles, irrespective of their foraging strategy. Terpinolene was a repellent for EPN species classified in all three foraging groups. However, such values of chemotaxis index (CI) were reported with EPN species only when pure concentration of VOC was used. Based on our current results, we conclude that responses to distinct volatile cues are a species-specific characteristic. Our results suggest that EPNs are able to distinguish herbivore-induced chemicals from chemicals that are typical for healthy roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali JG, Alborn HT, Stelinski LL (2010) Subterranean herbivore-induced volatiles released by citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes. J Chem Ecol 36:361–368

    Article  CAS  PubMed  Google Scholar 

  • Ali JG, Alborn HT, Stelinski LL (2011) Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. J Ecol 99:26–35

    Article  CAS  Google Scholar 

  • Bais HP, Park S-W, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Bargmann CI, Horvitz HR (1991) Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7:729–742

    Article  CAS  PubMed  Google Scholar 

  • Bedding RA, Akhurst RJ (1975) A simple technique for the detection of insect parasitic rhabditid nematodes in soil. Nematologica 21:109–110

    Article  Google Scholar 

  • Boemare NE, Akhurst RJ, Mourant RG (1993) DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int J Syst Bacteriol 43:249–255

    Article  CAS  Google Scholar 

  • Bonkowski M, Villenave C, Griffiths B (2009) Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321:213–233

    Article  CAS  Google Scholar 

  • Burman M, Pye A (1980) Neoaplectana carpocapsae: movement of nematode populations on thermal gradient. Exp Parasitol 49:258–265

    Article  CAS  PubMed  Google Scholar 

  • Campbell JF, Lewis EE, Stock SP, Nadler S, Kaya HK (2003) Evolution of host search strategies in entomopathogenic nematodes. J Nematol 35:142–145

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Nardo EAB, Grewal PS (2003) Compatibility of Steinernema feltiae (Nematoda: Steinernematidae) with pesticides and plant growth regulators used in glasshouse plant production. Biocontrol Sci Technol 13:441–448

    Article  Google Scholar 

  • Degenhardt J, Hiltpold I, Köllner TG, Frey M, Gierl A, Gershenzon J, Hibbard BE, Ellersieck MR, Turlings TCJ (2009) Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. PNAS 106:13213–13218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demarta L, Hibbard BE, Bohn MO, Hiltpold I (2014) The role of root architecture in foraging behaviour of entomopathogenic nematodes. J Invertebr Pathol 122:32–39

    Article  PubMed  Google Scholar 

  • Dillman AR, Guillermin ML, Lee JH, Kim B, Sternberg PW, Hallem EA (2012) Olfaction shapes host-parasite interactions in parasitic nematodes. PNAS 109:E2324–E2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eidt DC, Thurston GS (1995) Physical deterrents to infection by entomopathogenic nematodes in wireworms (Coleoptera: Elateridae) and other soil insects. Can Entomol 127:423–429

    Article  Google Scholar 

  • Erb M, Huber M, Robert CAM, Ferrieri AP, Machado RAR, Arce CCM (2013) The role of plant primary and secondary metabolites in root-herbivore behavior, nutrition and physiology. In: Johnson SN, Hiltpold I, Turlings TCJ (eds) Advances in insect physiology. Academic Press, Oxford, pp 53–95

    Google Scholar 

  • Forst S, Clarke D (2002) Bacteria-nematode symbiosis. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, Wallingford, pp 57–77

    Chapter  Google Scholar 

  • Grewal PS, Gaugler R, Lewis EE (1993) Host recognition behaviour by entomopathogenic nematodes during contact within insect gut contents. J Parasitol 79:495–503

    Article  Google Scholar 

  • Hallem EA, Dillman AR, Hong AV, Zhang Y, Yano JM, DeMarco SF, Sternberg PW (2011) A sensory code for host seeking in parasitic nematodes. Curr Biol 21:377–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heil M (2008) Indirect defence via tritrophic interactions. New Phytol 178:41–61

    Article  CAS  PubMed  Google Scholar 

  • Hiltpold I, Baroni M, Toepfer S, Kuhlmann U, Turlings TCJ (2010) Selection of entomopathogenic nematodes for enhanced responsiveness to a volatile root signal helps to control a major root pest. J Exp Biol 213:2417–2423

    Article  CAS  PubMed  Google Scholar 

  • Hiltpold I, Erb M, Robert CAM, Turlings TCJ (2011) Systemic root signaling in a belowground, volatile-mediated tritrophic interaction. Plant, Cell Environ 34:1267–1275

    Article  CAS  Google Scholar 

  • Hiltpold I, Bernklau E, Bjostad LB, Alvarez N, Miller-Struttmann NE, Lundgren JG, Hibbard BE (2013) Nature, evolution and characterisation of rhizospheric chemical exudates affecting root herbivores. In: Johnson SN, Hiltpold I, Turlings TCJ (eds) Behaviour and physiology of root herbivores. Academic Press, cambridge, pp 97–157

    Chapter  Google Scholar 

  • Ishibashi N, Choi D-R (1991) Biological control of soil pests by mixed application of entomopathogenic and fungivorous nematodes. J Nematol 23:175–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson TA, Klein MG (2006) Scarabs as pests: a continuing problem. Coleopt Bull 60:102–119

    Article  Google Scholar 

  • Johnson SN, Anderson EA, Dawson G, Griffiths DW (2008) Varietal susceptibility of potatoes to wireworm herbivory. Agric For Entomol 10:167–174

    Article  Google Scholar 

  • Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Ann Rev Entomol 38:181–206

    Article  Google Scholar 

  • Köllner TG, Schnee C, Gershenzon J, Degenhardt J (2004) The sesquiterpene hydrocarbons of maize (Zea mays) form five groups with distinct developmental and organ-specific distributions. Phytochemistry 65:1895–1902

    Article  PubMed  Google Scholar 

  • Koppenhöffer AM, Fuzy EM, Crocker R, Gelernter W, Polavarapu S (2004) Pathogenicity of Steinernema scarabaei, Heterorhabditis bacteriophora and S. glaseri to twelve white grub species. Biocontrol Sci Technol 14:87–92

    Article  Google Scholar 

  • Kruitbos L, Heritage S, Hapca S, Wilson MJ (2009) The influence of habitat quality on the foraging strategies of the entomopathogenic nematodes Steinernema carpocapsae and Heterorhabdits megidis. Parasitology 137:303–309

    Article  PubMed  Google Scholar 

  • Kuhar TP, Alvarez JM (2008) Timing of injury and efficacy of soil-applied insecticides against wireworms on potato in Virginia. Crop Prot 27:792–798

    Article  CAS  Google Scholar 

  • Laznik Ž, Trdan S (2013) An investigation on the chemotactic responses of different entomopathogenic nematode strains to mechanically damaged maize root volatile compounds. Exp Parasitol 134:349–355

    Article  CAS  PubMed  Google Scholar 

  • Laznik Ž, Trdan S (2015) Failure of entomopathogens to control white grubs (Coleoptera: Scarabaeidae). Acta Agric Scand Sect B 65:95–108

    Google Scholar 

  • Laznik Ž, Tóth T, Lakatos T, Vidrih M, Trdan S (2010) The activity of three new strains of Steinernema feltiae against adults of Sitophilus oryzae under laboratory conditions. J Food Agric Environ 8:132–136

    Google Scholar 

  • Lewis EE (2002) Behavioural ecology. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, Wallingford, pp 205–223

    Chapter  Google Scholar 

  • O’Halloran DM, Burnell AM (2003) An investigation of chemotaxis in the insect parasitic nematode Heterorhabditis bacteriophora. Parasitology 127:375–385

    Article  PubMed  Google Scholar 

  • Parker WE, Howard JJ (2001) The biology and management of wireworms (Agriotes spp.) on potato with particular reference to the UK. Agric For Entomol 3:85–98

    Article  Google Scholar 

  • Parra JRP (1998) Criação de insetos para estudos com patógenos. In: Alves SB (ed) Controle microbiano de insetos. FEALQ, Piracicaba, pp 1015–1038

    Google Scholar 

  • Peters A, Ehlers R-U (1994) Susceptibility of leather jackets (Tipula paludosa and Tipula oleracea; Tipulidae: Nematocera) to the entomopathogenic nematode Steinernema feltiae. J Invertebr Pathol 63:163–171

    Article  Google Scholar 

  • Rasmann S, Turlings TCJ (2008) First insights into specificity of belowground tritrophic interactions. Oikos 117:362–369

    Article  Google Scholar 

  • Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    Article  CAS  PubMed  Google Scholar 

  • Rasmann S, Hiltpold I, Ali J (2012) The role of root-produced volatile secondary metabolites in mediating soil interactions. In: Montanaro G, Cichio B (eds) Advances in selected plant physiology aspects. Tech Open Access Publisher, Croatia, pp 269–290

    Google Scholar 

  • Robert C, Frank D, Leach K, Turlings T, Hibbard B, Erb M (2013) Direct and indirect plant defenses are not suppressed by endosymbionts of a specialist root herbivore. J Chem Ecol 39:507–515

    Article  CAS  PubMed  Google Scholar 

  • Shapiro-Ilan D, Lewis EE, Campbell JF, Kim-Shapiro DB (2012) Directional movement of entomopathogenic nematodes in response to electrical field: effect of species, magnitude of voltage, and infective juvenile age. J Invertebr Pathol 109:34–40

    Article  PubMed  Google Scholar 

  • Turlings TCJ, Hiltpold I, Rasmann S (2012) The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes. Plant Soil 359:51–60

    Article  Google Scholar 

  • Van Dam NM (2009) Belowground herbivory and plant defenses. Ann Rev Ecol Evol Syst 40:373–391

    Article  Google Scholar 

  • Ward S (1973) Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc Natl Acad Sci USA 70:817–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissteiner S (2010) The effect of root volatiles on the orientation behavior of cockchafer larvae in the soil. Dissertation thesis. Georg-August-University-Göttingen, Göttingen, p 182

    Google Scholar 

  • Weissteiner S, Schütz S (2006) Are different volatile pattern influencing host plant choice of belowground living insects? Mitt Dtsch Ges Allg Angew Ent 15:51–55

    Google Scholar 

  • Weissteiner S, Huetteroth W, Kollmann M, Weißbecker B, Romani R, Schachtner J, Schütz S (2012) Cockchafer larvae smell host root scents in soil. PLoS ONE 7:e45827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506

    Article  CAS  PubMed  Google Scholar 

  • Woodring JL, Kaya HK (1988) Steinernematid and Heterorhabditid nematodes: a handbook of biology and techniques. Agricultural Experimental Station, Arkansas: Southern Cooperative Service Bulletin 331

Download references

Acknowledgments

This work was conducted within Horticulture No P4-0013-0481, a program funded by the Slovenian Research Agency. Part of this research was funded within Professional Tasks from the Field of Plant Protection, a program funded by the Ministry of Agriculture, Forestry, and Food of Phytosanitary Administration of the Republic Slovenia. Special thanks are given to Anamarija Jagodič and Anita Klobučar for their technical assistance. We would like to thank Gareth Martin (Becker Underwood) for providing the commercial EPN strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Žiga Laznik.

Additional information

Communicated by M. Traugott.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laznik, Ž., Trdan, S. Attraction behaviors of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) to synthetic volatiles emitted by insect-damaged carrot roots. J Pest Sci 89, 977–984 (2016). https://doi.org/10.1007/s10340-015-0720-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-015-0720-9

Keywords

Navigation